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Abstract—The transient stability of a power system depends
heavily on its operational state at the moment of a fault. In sys-
tems where the penetration of renewable generation is significant,
the dispatch of the conventional fleet of synchronous generators
is uncertain at the time of dynamic security analysis. Hence, the
assessment of transient stability requires the solution of a system
of nonlinear ordinary differential equations with unknown initial
conditions and inputs. To this end, we set forth a computational
framework that relies on Taylor polynomials, where variables
are associated with the level of renewable generation. This paper
describes the details of the method and illustrates its application
on a nine-bus test system.

Index Terms—Power generation dispatch, power system secu-
rity, power system stability, power system transients.

I. INTRODUCTION

Transient stability is a classical problem in power system

analysis [1]–[3]. Its objective is to determine whether a set

of interconnected generators will remain in synchronism after

a large disturbance in the bulk transmission system [3]–[6].

Transient stability analysis is based on synchronous generator

electromechanical dynamic models. Invariably, the mechanical

rotor dynamics are represented by an equation of motion,

but the underlying electrical circuit can take various forms

depending on the desired level of fidelity. Electromagnetic

phenomena with faster time constants, which do not have a

significant impact on rotor angle stability, such as stator and

network transients, are typically neglected. Transient instabil-

ity manifests as a separation of rotor angles within one or

more rotor “swings”.

The transient response depends heavily on the operational

state of a power system at the moment of a fault, as well as

on the severity (in terms of network location and impedance)

and clearing time of the disturbance. Typically, the operational

state of a power system is specified by a security-constrained

economic dispatch [7], [8], which in practice assumes known

(in advance) steady-state conditions. The incorporation of

metrics related to transient stability is possible within this

deterministic economic dispatch formulation. Numerical in-

tegration methods [9], [10], energy functions [11]–[14], and

decision-tree techniques [15], [16] are various approaches to

this end.
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The transient stability problem has been impacted by the

proliferation of renewable energy generation. These resources,

which are often non-dispatchable, have been displacing con-

ventional thermal generation at scale. Therefore, the pre-

fault operational conditions of the synchronous generators are

becoming increasingly uncertain (at the time of analysis),

since the balance among power generation, demand, and loss

needs to be maintained [17]. Furthermore, wind and solar

generation is interfaced using power electronic converters,

whose response during grid faults is not precisely known. The

increased level of uncertainty in our knowledge of both pre-

fault state and post-fault dynamic response, is challenging the

conventional (deterministic) transient stability assessment.

Uncertainties in power system dynamics have been studied

using trajectory sensitivity analysis, probabilistic collocation,

and polynomial chaos methods [18]–[21]. Trajectory sensi-

tivity is limited to relatively small uncertainties because it

relies on linearization, thus it may be ill-suited to study large

disturbances, particularly when the system is prone to instabil-

ity. To mitigate this issue, second-order trajectory sensitivity

has been proposed in [22]. Polynomial chaos methods may

fail at correlating uncertainties with outputs because they rely

on sampling the uncertainty space [20]. Recently, Lyapunov-

based methods have been introduced for robust transient

stability assessment [23], [24]. However, the theory has been

only developed for power systems represented with simplified

low-order component models.

Approaches based on affine arithmetic and zonotope reach-

ability analysis have been proposed as well [25], [26]. These

methods enclose the uncertain evolution of the system states in

time by employing convex sets (modeled as images of unit hy-

percubes by affine transformations [27]) and interval vectors.

However, they are sensitive to wrapping (i.e., uncontrolled set

expansion due to propagation of recurring over-approximations

in nonlinear systems) [28]. The wrapping phenomenon occurs

when nonlinear dependencies of states on initial conditions are

not considered [29], [30]. When such expansion of sets occurs,

one cannot readily differentiate between a physical instability

or numerical issues.

An alternative approach to analyze uncertainties relies on

Taylor models [28]–[32], which are better suited for propagat-

ing the dependency of uncertain initial conditions in nonlinear

systems. In addition, Taylor polynomials are relatively simple



to implement in a computer. The main idea of such methods is

to calculate multivariate polynomials representing the solution

at particular points in time, where the variables are associated

with uncertainties of initial conditions. The Taylor model-

based approach has been used in transient stability assessment

of uncertain power systems in [33]. Therein, the technique

was introduced as a tool to study the impact of uncertain

inertia constants and initial conditions, which were selected

as arbitrary intervals around an equilibrium, thereby lacking

rigorous justification. In [33], the power balance constraint

among generation and demand is disregarded, hence the initial

condition sets are not physically meaningful. Also, the system

model of [33] is relatively simple, as it employs reduced-

order generator models, and excitation system dynamics are

neglected.

This manuscript builds upon the ideas of [28]–[32]. Herein,

uncertainties are assumed to originate from the variability

of renewable power sources, which in turn impacts the op-

erational conditions of conventional generation. In contrast

to [33], we account for the effect of excitation on transient

stability by using higher-order models of generators, exciters,

and controls. In addition, we calculate sets of initial conditions

that satisfy a power balance constraint between uncertain

generation and demand before a transient event occurs. This

is necessary to have physically feasible sets of initial con-

ditions, thus avoiding unrealistic pre-fault non-equilibrium

states. Compared to [25], [26], the wrapping effect is avoided

by propagating via multivariate polynomials the nonlinear

dependence of the system states on initial conditions.

A concise summary of the proposed method is given in

Section II. A model that is suitable for the first-swing transient

stability analysis of a multi-machine power system is described

in Section III. In particular, the calculation of polynomials

that capture uncertain initial conditions and inputs is presented

in Section III-E. The method’s algorithmic implementation is

described in Section IV. Section V presents illustrative results,

and Section VI concludes.

II. PROPOSED ANALYSIS FRAMEWORK

The dynamic response of a power system immediately after

a transmission fault is calculated by solving an Ordinary

Differential Equation (ODE) of the form

d

dt
z = Fγ (z, u) (1)

for t ∈ [0, T ], with initial condition z0 ∈ Z0 ⊆ Rnz , input

u ∈ U ⊆ R
nu , and γ ∈ {1, 2}. The output is defined as a

function of the state vector,

w = Gγ(z) . (2)

The vector z includes machine electrical and mechanical

states, as well as exciter states.1 The exogenous input vector u
contains the prime mover torques at the generator shafts.

1The prime mover and governor dynamics are not modeled here since we
are focusing on first-swing stability, although they could be added for studying
multi-swing stability [4].

In order to capture renewable generation uncertainty at the

moment of the fault, the initial conditions z0 and inputs u
belong to sets Z0 and U , respectively. In particular, u is

considered constant within the time-frame of interest. The

ODE is indexed by γ to capture the dynamics during the fault

(γ = 1) and after it has been cleared (γ = 2). The switch

occurs at a predetermined clearing time.

A multivariate polynomial vector is defined by

y(p) =

nψ
∑

i=1

ψi(p) yi (3)

where

ψi(p) =

np
∏

j=1

p
ni,j
j (4)

is a monomial on np variables p1, . . . , pnp , and y1, . . . , ynψ
is a set of nψ vectors in Rny . The polynomial y(p) has a

prescribed degree nd. Hence, the exponents ni,j belonging

to the i-th monomial ψi(p) (i = 1, . . . , nψ) must satisfy
∑np
j=1 ni,j ≤ nd. In this case, the number of possible mono-

mials is nψ =
(np+nd)!
np!nd!

[29], [34]. Herein, all polynomials

are of degree nd, and all nψ monomials are assumed to be

present.

Sets are defined as

Y = {y(p) : pj ∈ [−1, 1], j = 1, . . . , np} . (5)

Note that each variable pj represents an independent source

of uncertainty. For instance, the sets Z0 and U are defined as

the range of the vectors of multivariate polynomials z0(p) and

u(p), respectively. Also, the range of various polynomials that

are calculated in Algorithm 1 of Section IV represents the sets

of power system states and outputs at particular times.

The proposed method relies on algebraic operations between

polynomials of order nd, such as addition or multiplication by

a constant. When multiplying polynomials, terms of degree

greater than nd are neglected [35]. Disregarding high-order

terms does not lead to relatively large error since |pj | ≤ 1.

In addition, the analysis requires the calculations of function

compositions with polynomials, such as trigonometric and

exponential functions appearing in the system equations, using

nd-order truncated Taylor series [35], e.g., see Appendix A.

Based on our experience, polynomial expansions of order as

low as nd = 3 can be suitable for the treatment of uncertainties

in a transient stability program. All operations and functions

can be implemented efficiently in a computer.

The solution to (1) is approximated by computing recur-

sively a sequence of polynomials zs(p) indexed by s =
1, 2, . . . , sn that represent the uncertain states at any time

t = sr (the study horizon is T = snr), where r is a small time

step. Each zs(p) is computed via successive approximations

(Picard iterations) [36]–[38]

ζ(v)s (p, τ) = zs−1(p) +

∫ τ

0

F
(v−1)
s (p, µ) dµ (6)



with

F
(v−1)
s (p, τ) ≈ Fγ

(

ζ(v−1)
s (p, τ), u(p)

)

(7)

for v = 1, . . . , nd. The approximation of (7) occurs because

terms of order greater than nd are dropped. Here, τ ∈ (0, r]

and ζ
(0)
s (p, τ) = zs−1(p). Note that t = (s − 1)r + τ during

step s, hence zs(p) = ζ
(nd)
s (p, r).

To begin the recursion, the polynomials z0(p) and u(p) are

calculated from a prescribed vector polynomial that models

uncertain dispatch conditions, as detailed in Section III-E.

Recall that u(p) is considered time invariant throughout the

study, and that it represents the mechanical torques at the

shafts of the synchronous machines. In each Picard iteration,

a vector polynomial F
(v−1)
s (p, τ) is calculated from Fγ(·, ·)

by using function compositions with polynomials via Taylor

expansions [35], e.g., see Appendix A. Therefore, the function

Fγ(·, ·) is required to be analytic [32]. This is not overly

restrictive since the network change due to breaker action can

be made to occur close to any given time tc = scr with

reasonably small time step. An illustrative example of this

iterative procedure can be found in Appendix B.

III. SYSTEM MODELING FOR TRANSIENT STABILITY

A. Synchronous Generators

The transient response of the k-th synchronous generator,

k = 1, . . . , n, can be modeled using the following set of

ODEs [6]:

d

dt
erqd,k = −T−1

dqo,k(e
r
qd,k −Xdq,ki

r
qd,k − erfd0,k) (8)

d

dt
ωk =

1

2Hk

(

Tm,k − erTqd,kirqd,k
)

(9)

d

dt
δk,1 = ωb(ωk − ω1) (k 6= 1) . (10)

These equations employ per unit quantities. They represent

1.1-type models, i.e., qd circuits that have one damper in the

q-axis and only the field winding in the d-axis. (The use of

higher-order models is possible.) The superscript ‘r’ denotes

that the variables are in the rotor reference frame of each

machine. Magnetic saturation is not modeled in detail, since

the reactances are constant. Stator transients are neglected,

as typically done in transient stability studies. The vectors

f rqd,k = (f rq,k, f
r
d,k)

T represent either voltage or current; also,

we define erfd0,k = (erfd,k, 0)
T for notational convenience.

Machine reactances and time constants are embedded in the

matrices

Xdq,k =

(

0 X ′
d,k −Xd,k

Xq,k −X ′
q,k 0

)

(11)

and Tdqo,k = Diag(τdo,k, τqo,k). It is assumed that X ′
d,k =

X ′
q,k, i.e., transient saliency is neglected. The vectors erqd,k,

irqd,k, erfd0,k represent voltages behind transient reactance, cur-

rents injected into the power network, and excitation voltage,

respectively. The states ωk and δk,1 = θk − θ1, k 6= 1, are

rotor speed and relative rotor angle, respectively. The rotor

angles θk with k = 1, . . . , n are measured with respect to a

synchronously rotating frame of constant base frequency ωb,
and satisfy dθk/dt = ωb(ωk − 1). The prime mover torque

Tm,k are considered a constant input during the study.

B. Excitation Systems

The exciter, stabilizing circuit, and voltage amplifier for

the kth generator are modeled using the following set of

ODEs [6]:2

d

dt
erfd,k = − 1

TE,k

[(

KE,k + SE,k(e
r
fd,k)

)

erfd,k − va,k
]

(12)

d

dt
rf,k = − 1

TF,k

(

rf,k −
KF,k

TF,k
erfd,k

)

(13)

d

dt
va,k = − 1

TA,k

(

va,k −KA,kv
in
k + SA,k(va,k)

)

. (14)

For notational simplicity, these states are collected in the

vectors erTfd = (erfd,1, . . . , e
r
fd,n), r

T
f = (rf,1, . . . , rf,n), and

vTa = (va,1, . . . , va,n). The voltages

vin
k = V ref

k − Vk + rf,k −
KF,k

TF,k
erfd,k (15)

are inputs of (14), where V ref
k and Vk are reference and

measured voltages at the terminals of the kth generator, re-

spectively. The measured voltage is obtained with3

Vk =
√

vrTqd,k · vrqd,k (16)

vrqd,k = erqd,k +

(

0 −X ′
d,k

X ′
q,k 0

)

irqd,k . (17)

Note that in this model, the initial condition (at steady

state) of the amplifier state satisfies va,k0 = 0. The parameter

KE,k of (12) depends on erfd,k0 (erfd,k at t = 0), i.e.,

KE,k = −SE,k(erfd,k0) [40]. The saturation functions for the

exciter and amplifier states are, respectively:

SE,k(e
r
fd,k) = AE,ke

BE,ke
r
fd,k (18)

SA,k(va,k) =
(

KA,k − V lim
A,k

)

(

va,k

V lim
A,k

)σ

. (19)

The exponent σ can take odd values, i.e., σ ∈ {3, 5, 7, . . .}.
The function SA,k(va,k) is introduced to saturate the am-

plifier state smoothly instead of using hard limits, so that

−V lim
A,k ≤ va,k ≤ V lim

A,k. If the value of the exponent σ is

relatively high, the behavior of the amplifier with smooth

saturation approaches the model using hard limits. However,

this requires increasing the order of Taylor polynomials, which

could become computationally impractical. The response of

the excitation system obtained by the smooth saturation model

is shown in Fig. 1 for two case studies. In these simula-

tions, the reference voltage V ref
k = 1 p.u. and σ = 5; the

2This model is known as Type DC1A excitation system [39], and is adopted
here for illustration purposes only. Any applicable exciter model may be used
instead.

3The dynamics of the voltage sensing subsystems have been neglected,
being relatively fast.
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Fig. 1. Response of an excitation system to two voltage dips at t = 0 s which
yield terminal voltages Vk = 0.15 p.u. and Vk = 0.85 p.u. that last 9 cycles
of 60 Hz. The dotted and solid traces correspond to models of the voltage
amplifier with a smooth saturation function and hard limits, respectively.

exciter parameters are obtained from Table I of Section V

for k = 1. The selected voltage sags, where Vk = 0.15
and Vk = 0.85 p.u., could be representative of transmission

faults that occur relatively close and far from the terminals of

a synchronous generator, respectively. The main variable of

interest in a transient stability study is the excitation voltage

efd,k. The comparison of the two modeling approaches shows

acceptable performance, while maintaining the amplifier volt-

age saturated within desired limits. The adopted saturation

model is convenient from an application perspective, because it

facilitates the Taylor polynomial-based Picard iterations of (6).

C. Loads, Renewable Generation, and Transmission Network

During the first swing, loads are assumed to behave as

constant impedances [5]. On the other hand, renewable gen-

eration injects zero active and nonzero reactive power [41].

Here, for illustration purposes, the control strategy of the hth

renewable power plant (h = 1, . . . ,m) is to supply reactive

power according to the equation4

Qh = BC,hV
2
h (20)

with Vh the voltage magnitude at the terminals of the power

plant and BC,h some prescribed constant.

The network seen by the synchronous generators (compris-

ing loads, renewable generation response, and transmission

system) can be represented in quasi steady state by phasor

equations

Ĩas = YγẼas (21)

where Yγ ∈ Cn×n is a reduced complex admittance matrix [5].

The vectors Ĩas and Ẽas ∈ Cn contain all generator current

and voltage phasors, respectively. Two versions of Yγ for γ ∈
{1, 2} represent the transmission system during the fault and

after it has been cleared, respectively. The fault is cleared after

a prescribed time tc by protective devices.

Using qd variables in a common synchronous reference

frame (denoted by a superscript ‘e’) so that F̃as = feq −
jfed [42], (21) can be rewritten by equating real and imaginary

parts as

Ie = SγE
e (22)

where F e = (feTqd,1, . . . , f
eT
qd,n)

T ∈ R2n×1 and Sγ ∈ R2n×2n.

Generator variables are mapped from the individual rotor

reference frames to the common synchronous reference frame

by [42]

feqd,k =

(

cos θk sin θk
− sin θk cos θk

)

f rqd,k = T (θk)f
r
qd,k . (23)

Hence, (22) becomes

K(θ)Ir = SγK(θ)Er (24)

where K(θ) = Diag(T (θ1), . . . , T (θn)) ∈ R2n×2n is block

diagonal, F r = (f rTqd,1, . . . , f
rT
qd,n)

T ∈ R
2n×1, and θ =

(θ1, . . . , θn)
T ∈ Rn. Premultiplying both sides of (24) by

Diag(T T (θ1), . . . , T
T (θ1)) ∈ R2n×2n yields, after some el-

ementary matrix algebra,

Ir = KT (δ)SγK(δ)Er = Rγ(δ)E
r (25)

with δ = (0, δ2,1, . . . , δn,1)
T ∈ Rn. That is, a new matrix

Rγ(δ) ∈ R2n×2n has been introduced, where rotor angles are

referred to θ1.5

D. Interconnected Power System

The collection of the ODEs (8), (9), (10), (12), (13), and

(14) for k = 1, . . . , n, together with the algebraic equa-

4It is certainly possible to model more advanced reactive power compen-
sation schemes by power electronic converter-interfaced renewables, but this
is outside the scope of the present study.

5When interconnecting the generators in the system study, fr
qd,k

in (9) is

selected from F r via fr
qd,k

= CkF
r with Ck ∈ R2×2n.



tion (25), yield a system as in (1)-(2),6 where

z = (ErT , ωT , δT , erTfd , r
T
f , v

T
a )
T ∈ R

7n−1 (26)

u = Tm ∈ R
n (27)

are state and input vectors, respectively. The vectors ωT =
(ω1, . . . , ωn) and T Tm = (Tm,1, . . . , Tm,n) are introduced

for notational convenience. The selected system outputs for

transient stability assessment are7

w = (V T ,ΩT , δT , erTfd , v
T
a )

T ∈ R
5n−2 . (28)

V T = (V1, . . . , Vn) is a vector of terminal voltages (16), and

ΩT = (ω2,1, . . . , ωn,1) with ωk,1 = ωb(ωk − ω1) represents

the relative rotor speed of (10). Since the network topology is

switched at a prescribed moment in time, the voltage outputs

are discontinuous.

E. Polynomials of Initial Conditions and Inputs

The uncertain initial conditions and inputs (states and prime

mover torques of each synchronous machine) are initialized

from an uncertain power flow, where the uncertainty stems

from the renewable power injection. Recall that we have n
conventional (dispatchable) and m renewable generators. Their

powers are placed in the vector

P = (P1, . . . , Pk, . . . , Pn, . . . , Pn+h, . . . , Pn+m)T . (29)

For simplicity, assume that the renewables are not correlated.

Consider an uncertain renewable source (element q > n of

above vector) with uncertain power output Pq0 + [−1, 1]∆Pq,
with ∆Pq > 0 the radius of the uncertainty. The impact of

this uncertain generation can be absorbed by the remaining

dispatchable generators using pre-specified (by the system

operator) participation factors. This is modeled with a vector

Pi where: its q-th element is equal to ∆Pq; Pi,j = 0, j > n,

j 6= q; and
∑

j Pi,j = 0.8 Considering all np ≤ m renewable

uncertainties leads to

P (p) = P0 +

np
∑

i=1

piPi (30)

The vector P0 represents a nominal dispatch of the power

system, which is obtained using an ac power flow. Recall from

Section II that the polynomial variables pi ∈ [−1, 1].
Uncertain power generation can be related to the terminal

voltage angles of all n+m units by [7]:

∆P (p) = B∆ϕ(p) (31)

where ∆P (p) = P (p) − P0 and B ∈ R(m+n)×(m+n) is a

reduced network susceptance matrix from a dc power flow

formulation. By solving (31) for ∆ϕ(p), a polynomial vector

6Notice in (25) that Ir (vector of algebraic variables) are explicit functions
of δ and Er (vectors of state variables), hence the algebraic variables ir

qd,k
of (8) and (9) can be written as a function of the states, leading to an ODE.

7Outputs can be specified for analysis purposes and/or to represent mea-
surable variables from the system.

8Uncertain generation also yields uncertain transmission power losses.
These losses are neglected.

of uncertain voltage angles at the terminals of conventional

and renewable generators is

ϕ(p) = ϕ0 +∆ϕ(p) . (32)

Here, ϕ0 is obtained from the ac power flow solution based

on P0. Notice that ϕ1(p) = ∆ϕ1(p) = 0 in ϕ(p) of (32),

representing the reference bus voltage angle. We assume that

the reactive power supplied by the synchronous machines is

unaffected by the active-power variability of renewables, hence

Qk(p) = Q0,k (33)

where Q0 is obtained from the ac power flow solution based

on P0. The initial conditions z0(p) and inputs u(p) are ob-

tained by performing function compositions with polynomials.

In particular, the operations are replaced with appropriate nd-

order Taylor expansions, which are given in Appendix A.

The initialization proceeds as follows:

1) Compute real and imaginary components of the voltage

phasor Ṽk(p):

V re
k (p) = Vkcϕ,k(p) (34)

V im
k (p) = Vksϕ,k(p) (35)

where Vk = V ref
k at t = 0 (terminal voltage equals its

reference) and

cϕ,k(p) ≈ cos(ϕk(p)) (36)

sϕ,k(p) ≈ sin(ϕk(p)) (37)

are trigonometric function compositions of ϕk(p).
2) Compute real and imaginary components of the current

phasor Ĩk(p) using (30) and (33):

I re
k (p) ≈

1

Vk
(Pk(p)cϕ,k(p) +Qk(p)sϕ,k(p)) (38)

I im
k (p) ≈ 1

Vk
(Pk(p)sϕ,k(p)−Qk(p)cϕ,k(p)) . (39)

3) Calculate cosine and sine (not the angle itself) of the

rotor angle position:

cθ,k(p) ≈ U re
k (p)

1

Uk(p)
(40)

sθ,k(p) ≈ U im
k (p)

1

Uk(p)
(41)

where

U re
k (p) = V re

k (p)−Xq,kI
im
k (p) (42)

U im
k (p) = V im

k (p) +Xq,kI
re
k (p) (43)

Uk(p) ≈
√

U re
k
2(p) + U im

k

2
(p) . (44)

4) Compute qd terminal voltages and currents in the rotor

reference frame:

vrq,k(p) ≈ V re
k (p)cθ,k(p) + V im

k (p)sθ,k(p) (45)

vrd,k(p) ≈ V re
k (p)sθ,k(p)− V im

k (p)cθ,k(p) (46)



irq,k(p) ≈ I re
k (p)cθ,k(p) + I im

k (p)sθ,k(p) (47)

ird,k(p) ≈ I re
k (p)sθ,k(p)− I im

k (p)cθ,k(p) . (48)

5) Compute initial conditions and torque input of the

synchronous generators:9

erq,k(p) = vrq,k(p) +X ′
d,ki

r
d,k(p) (49)

erd,k(p) = vrd,k(p)−X ′
q,ki

r
q,k(p) (50)

Tm,k(p) ≈ erq,k(p)irq,k(p) + erd,k(p)i
r
d,k(p) . (51)

6) Assign the polynomial representing rotor speed:

ωk0(p) = 1 . (52)

7) Compute the rotor angle position

θk(p) ≈ asin (sθ,k(p)) (53)

with sθ,k(p) from (41).

8) Calculate relative rotor angles:

δk,1(p) = θk(p)− θ1(p) (54)

for all k = 2, . . . , n.

9) Compute the initial conditions of the excitation system:

erfd,k(p) = erq,k(p) + (Xd,k −X ′
d,k) i

r
d,k(p) (55)

rf,k(p) =
KF,k

TF,k
erfd,k0(p) (56)

va,k(p) = 0 . (57)

10) Calculate the functional dependence of the initial

condition-dependent parameter [see (12)] on p:

KE,k(p) ≈ −SE,k
(

erfd,k(p)
)

. (58)

The polynomial z0(p) is assembled by collecting (49), (50),

(52), (54), (55), (56), and (57) in a vector as in (26). The

input vector u(p) is assembled by the polynomials of (51).

The parameter (58) is used in (12).

IV. FIRST-SWING TRANSIENT STABILITY ASSESSMENT

Transient stability is studied using Algorithm 1, whose main

steps are outlined here. The parameters of all synchronous

generators and excitation subsystems (e.g., time constants and

reactances) are embedded within a data structure GE, which is

passed as a parameter to the algorithm among other necessary

pieces of information, such as the network matrices Sγ .

The algorithm begins by calculating polynomials at t = 0,

namely, z0(p) and u(p) that describe uncertain initial condi-

tions and inputs, respectively, using the steps of Section III-E.

In line 2, the corresponding system output polynomial w0(p)
is calculated. In line 3, an interval vector that contains the

set of system outputs at t = 0 is computed (for plotting) as

explained in Appendix C.

9Since stator ohmic losses are neglected, the coefficients of the monomials
of Tm,k(p) should be relatively similar to those of Pk(p) of (30) (k =
1, . . . , n). This fact could be used to assert whether the initialization is correct.

Algorithm 1: Transient Stability Assessment

Data: Total number of steps sn, elapsed number of steps

to clear the fault sc, time step r, set of network

matrices {S1, S2}, generator and excitation system

parameters GE, polynomial of power generation

P (p), polynomial degree nd.

Result: System output polynomials ws(p) and intervals

[ws, ws] for s = 0, 1, . . . , sn, and first-swing

stability diagnosis D ∈ {‘stable’, ‘unstable’}.
1 z0(p), u(p)← initialization(P (p),GE)
2 w0(p)← outputs(z0(p),GE, S1)
3 w0, w0 ← interval(w0(p))
4 t0 ← 0
5 for s = 1 to sn do

6 γ ← switch(s, sc)
7 zs(p)← Picard(zs−1(p), u(p),GE, Sγ , r, nd)
8 ws(p)← outputs(zs(p),GE, Sγ)
9 ws, ws ← interval(ws(p))

10 ts ← ts−1 + r
11 end

12 D ← assessment({[ws, ws] : s = sc, . . . , sn})

The operations of the main loop start in line 6 by choosing

the index

γ =

{

1 if s ≤ sc (during the fault)

2 if s > sc (after the fault is cleared)
(59)

that selects the appropriate network matrix Sγ for the s-th time

interval. Recall that sc of (59) indicates the time tc = scr for

which the fault remains active. In line 7, the state polynomial

zs(p) is computed using Picard iterations, as explained in

Section II. In line 8, the output polynomial ws(p) (defined

in (28)) is calculated. In line 9, an interval vector containing

the outputs is obtained.

In line 12, the determination of (first-swing) transient sta-

bility takes place. This is based on the lower and upper

bounds of the relative rotor speed interval vectors, [Ωs,Ωs],
for s = sc + 1, . . . , sn, which are extracted from the output

vector. This range of s is chosen because we are interested in

the first-swing stability of the system after the fault is cleared.

Definition 1: A relative rotor angle is said to “swing” when

a maximum or minimum is reached as time progresses.

Based on the above definition, the assessment is performed

by checking for relative rotor speed zero crossings as follows.

Let the interval [Ωs,l,Ωs,l] be the lth entry of [Ωs,Ωs], with

l = 1, . . . , n − 1 (there are n − 1 relative rotor speeds). The

power system is considered first-swing stable if there exist

indexes αl, βl ∈ {sc, . . . , sn} such that

Ωαl,l · Ωαl+1,l < 0 (60)

and

Ωβl,l · Ωβl+1,l < 0 (61)

for all l = 1, . . . , n − 1; otherwise, the power system is
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Fig. 2. Modified WSCC nine-bus power system.

TABLE I
TYPE DC1A EXCITATION SYSTEM PARAMETERS

k TE,k AE,k BE,k KF,k TF,k KA,k TA,k V lim
A,k

1 0.1 9.6·10−3 1.14 0.1 1.3 50 0.1 6.0

2 0.57 1.3·10−3 1.37 0.09 0.35 20 0.4 2.0

3 0.68 1.6·10−3 1.63 0.11 0.35 15 0.3 1.0

unstable. In view of (10), the l-th pair indicates whether or

not all possible trajectories of the lth relative rotor angle will

exhibit a swing.

As a post-processing stage of Algorithm 1 (not explicitly

shown), one can generate one or more particular trajectories

using the sequence of output polynomials. This is accom-

plished by evaluating ws(p) (s = 0, 1, . . . , sn) for given p that

represents the level of renewable generation at the moment of

the fault.

V. CASE STUDIES

We study a modified WSCC nine-bus power system, shown

in Fig. 2. This system has n = 3 synchronous generators. The

parameters of the WSCC power system are specified in [5,

Table 2.1], given in per unit (p.u.) on a common 100-MVA

power base. The excitation system parameters are specified

in Table I, which are obtained from [5, Appendix D]. The

amplifier state saturation function of (19) uses σ = 5. Two

renewable power sources (i.e., m = 2), namely R1 and R2,

have been integrated to the system by means of two step-up

transformers, each rated for 50 MVA and having an impedance

value of 8% on the 50-MVA base. The loads are considered

to be known without uncertainty, and are modeled as constant

impedances during the transient.

Two studies are considered to show first-swing transient

stability and instability. In both cases, the power system is

perturbed by a three-phase fault that occurs on the transmission

line 5-7 at a point that is next to bus B7 (see Fig. 2). The

fault is cleared by opening the circuit breakers CB5 and CB7

in 5 cycles. During the first-swing time horizon, the two

renewable power plants are programmed to supply reactive

power resembling capacitive reactances with BC,1 = 0.5 p.u.

and BC,2 = 0.5 p.u. [see (20)].

The studies were conducted on a 2.2-GHz Intel Core

i7 personal computer. All polynomial operations were im-

plemented using standard matrix computations and object-

oriented programming in Matlab 2015a [43]. The parameters

considered in Algorithm 1 are r = 1/120 s, nd = 6, sc = 10,

and sn = 134. The CPU time to run each case study was

approximately 27 s. The uncertain dispatch conditions are

calculated by considering 0.24 p.u. power uncertainty in each

renewable power source, i.e., ∆Pq = 0.12 p.u. (q ∈ {4, 5}).
This means that we consider a total uncertainty of 0.48 p.u.

in a power system that supplies a total demand of 3.15 p.u.

In particular, the polynomial (30) for the stable case study

is obtained from the results of a power flow

P0 = (0.891, 1.4, 0.4, 0.25, 0.25)T (62)

and arbitrarily selected participation factor vectors

P1 = 0.12 · (−0.3,−0.4,−0.3, 1, 0)T (63)

P2 = 0.12 · (−0.3,−0.4,−0.3, 0, 1)T . (64)

Here, p = (p1, p2)
T . The two sources of uncertainty from

the renewable power sources are distributed among the syn-

chronous generators as described in Section III-E. To yield the

unstable case, we use the following power flow result

P0 = (0.892, 1.62, 0.44, 0.12, 0.12)T (65)

and the same vectors of (63) and (64). Substitution of (62)–

(64) in (30) yields, for example, P4(p) = 0.25 + 0.12p1 with

p1 ∈ [−1, 1], which implies that P4(p) ∈ [0.13, 0.37] p.u.

Results of system outputs showing first-swing transient

stability and instability are illustrated in Figs. 3–5. Time-

domain intervals, deterministic trajectories, and polynomial-

based trajectories are displayed using gray, solid-black, and

dotted-black traces, respectively. The time domain intervals are

obtained from [ws, ws] for s = 0, 1, . . . , sn, which is an output

of Algorithm 1. The deterministic trajectories are generated

using the analytic model of Section III and a numerical ODE

solver (viz., ode23s in Matlab, with a maximum step size of

1/300 s), whose initial conditions are obtained by evaluating

z0(p) at the following points:

p ∈
{

(0, 0)T , (1, 1)T , (−1, 0)T , (−1,−1)T
}

. (66)

The polynomial-based trajectories are obtained by evaluating

the sequence ws(p) for s = 0, 1, . . . from Algorithm 1 at the

same values of (66). It is interesting to note that even the

extreme points, where |pj | = 1 and the approximation error is

greatest, yield acceptable results.

The polynomial-based trajectories have been down-sampled

in the plots for visibility. Note that in Figs. 3–5 the deter-



ministic and polynomial-based trajectories are in agreement

among each other. This implies that the Picard iterations

of Algorithm 1 provided satisfactory results for first-swing

transient stability assessment.

Figure 3 shows time-domain intervals of stable and unstable

relative rotor angles and speeds. In the stable case, both

upper and lower bounds of all relative speeds (ω2,1 and ω3,1)

cross zero. However, in the unstable case, the upper bounds

of the relative speeds do not cross zero; hence, a subset of

the trajectories of relative rotor angles may diverge, which

implies loss of synchronism among generators. It is interesting

to observe in the unstable case that the set of initial conditions

yields both stable and unstable trajectories, which the method

can produce without any particular difficulty. The simulations

showing the unstable case were stopped early (i.e., once the

uncertainty of any relative rotor angle exceeds 150◦), since the

order of the Taylor polynomials used in this study is deemed

insufficient in view of (72) and (73) for nd = 6.

Figures 4 and 5 illustrate time-domain intervals of genera-

tor terminal voltages and their excitation controls for the stable

and unstable cases. These outputs are plotted for informative

purposes only, as they are not used in establishing first-swing

stability.

VI. CONCLUSION

This paper has set forth a method to study first-swing rotor

angle stability of power systems in the context of renewable

power generation uncertainty. Due to its generality, the pro-

posed method can incorporate arbitrary nonlinear exciter (and

other component) models, thereby offering excellent accuracy.

An important contribution of this work is the calculation of

the effect of renewable power generation uncertainty on initial

conditions and system inputs. All calculations are based on

multivariate polynomials, which also facilitate the numeri-

cal solution of the underlying nonlinear ordinary differential

equations, which is obtained using Picard iterations. Transient

stability is assessed through an examination of the time-

domain intervals of rotor speeds.

The method was tested successfully on a small power

system example. However, further application to large-scale

power system models is necessary; this remains under inves-

tigation. Also, it is the authors’ opinion that an important

enhancement of the algorithm would be its extension for

handling power systems modeled with differential algebraic

equations. Such capability would permit incorporation of more

complex load models, such as voltage- or frequency-dependent

loads, or loads that withdraw constant power and/or current.

APPENDIX A

TAYLOR SERIES EXPANSIONS

Let z, zc ∈ R represent a function variable and an expansion

center, respectively. Here, these variables are polynomials of p,

and we have z = z(p) and zc = z(0). The calculation of some

nonlinear expressions that commonly appear in the transient

stability model equations is performed as follows:

sin z ≈ sin zc · tcos (z − zc) + cos zc · tsin (z − zc) (67)
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0

0.5

1

1.5

2

2.5

δ
2
,1

(r
a
d
)

0

0.5

1

1.5

2

2.5

δ
3
,1

(r
a
d
)

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4
ω2,1 = 0

ω
2,1 = 0

t (s)

ω
2
,1

(r
a
d
/s

)

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4
ω3,1 = 0

ω
3,1 = 0

t (s)

ω
3
,1

(r
a
d
/s

)

b) Unstable

0

1

2

3

4

δ
2
,1

(r
a
d
)

0

1

2

3

4

δ
3
,1

(r
a
d
)

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

ω
2,1 = 0

t (s)

ω
2
,1

(r
a
d
/s

)

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

ω
3,1 = 0

t (s)

ω
3
,1

(r
a
d
/s

)

Fig. 3. Stable and unstable relative rotor angle and relative speed bounds
(gray), deterministic trajectories (solid black), and polynomial-based trajecto-
ries (dotted black).

cos z ≈ cos zc · tcos (z − zc)− sin zc · tsin (z − zc) (68)

ez ≈ ezc · texp (z − zc) (69)

√
z ≈ √zc · tsqrt

(

1 +
z − zc
zc

)

, zc > 0 (70)

1

z
≈ 1

zc
· tinv

(

1 +
z − zc
zc

)

, zc 6= 0 (71)

where the following Taylor expansions are used (up to or-

der nd)

tsin (η) =

⌈
nd
2

⌉
∑

i=1

(−1)i−1

(2i− 1)!
· η2i−1 (72)
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Fig. 4. Stable and unstable terminal voltage bounds (gray), deterministic
trajectories (solid black), and polynomial-based trajectories (dotted black).

tcos (η) = 1 +

⌈
nd
2

⌉
∑

i=1

(−1)i
(2i)!

· η2i (73)

texp (η) = 1 +

nd
∑

i=1

1

i!
· ηi (74)

tsqrt (1 + η) = 1 +

nd
∑

i=1

(−1)i(2i)!
4i(i!)2(1− 2i)

· ηi, η ≥ −1 (75)

tinv (1 + η) = 1 +

nd
∑

i=1

(−1)i · ηi, |η| < 1 . (76)

In addition, we use the following series for |z| ≤ 1:

asin(z) ≈ tasin(z) =

⌊
nd
2

⌋
∑

i=0

4−i

2i+ 1

(

2i

i

)

· z2i+1 . (77)

APPENDIX B

EXAMPLE OF PICARD ITERATIONS

This example illustrates the use of Picard iterations to

approximate the solution of the ODE

dz

dt
= F (z, u) = − sin z + u (78)

with initial condition set

Z0 =
{

z0(p1) =
π

2
+ 0.1p1 : p1 ∈ [−1, 1]

}

(79)
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Fig. 5. Stable and unstable excitation system bounds (gray), deterministic
trajectories (solid black), and polynomial trajectories (dotted black).

and input set

U = {u(p2) = 1 + 0.1p2 : p2 ∈ [−1, 1]} . (80)



The previous ODE and sets of initial conditions and inputs

have no physical significance; they were conceived to illustrate

the Picard iterative process in a relatively simple manner.

In this example, we calculate the polynomial z1(p) =
z1(p1, p2) that represents the set of states

Z1 = {z1(p) : pj ∈ [−1, 1], j = 1, 2} (81)

of the ODE (78) at t = r = 1. We consider Taylor polynomial

expansions and multivariate polynomials of fourth degree

(nd = 4) in the calculations. Higher-order terms are dropped,

similarly to how they would be implemented in a computer

program and stored in memory.

The algorithm proceeds as follows:

1) The fourth-degree Taylor expansion of F is obtained:

F (z, u) =− sin zc cos(z − zc)
− cos zc sin(z − zc) + uc + (u− uc)

≈− sin zc

(

1− (z − zc)2
2

+
(z − zc)4

24

)

− cos zc

(

(z − zc)−
(z − zc)3

6

)

+ uc + (u − uc) . (82)

Please see Appendix A for details on Taylor expansions.

Let (zc, uc) = (z0(0), u(0)) = (π/2, 1). Hence,

F (z, u) ≈ (z − π/2)2
2

− (z − π/2)4
24

+ (u− 1) . (83)

In this example, F (zc, uc) = 0 for simplicity, but this

condition does not need to hold in general.

2) The Picard iterations are initialized by setting

ζ
(0)
1 (p, τ) = z0(p) =

π

2
+ 0.1p1 + 0p2 + 0τ . (84)

Here, time τ is introduced as an extra monomial variable

(hence, the total number of variables np = 3). Note that

p2 and τ are explicitly listed with zero coefficients. Re-

call from Section II that we consider (for implementation

purposes) that all possible monomials are present. The

other higher-order zero-coefficient monomials, which

are part of the fourth-order polynomial on p1, p2, and τ ,

are not shown.

3) The polynomial

F
(0)
1 (p, τ) = F

(

ζ
(0)
1 (p, τ), u(p2)

)

= 0.1p2 + 0.005p21 − 4.17 · 10−6p41 + 0τ (85)

is calculated using (83).

4) A Picard iteration is performed,

ζ
(1)
1 (p, τ) = z0(p) +

∫ τ

0

F
(0)
1 (p, µ) dµ

≈ π

2
+ 0.1p1 + 0.1p2τ + 0.005p21τ (86)

using F
(0)
1 (p, τ) of step 3. Note that the resulting poly-

nomial of this step has been truncated to maintain

a fourth-order polynomial representation. Otherwise, a

fifth order polynomial due to the monomial p41τ would

have been obtained.

5) Steps 3–5 are repeated using the latest polynomial

ζ
(v−1)
1 (p, τ) with v ∈ {2, 3, 4} [see (6)]. At most nd = 4

Picard iterations are necessary to generate the desired

degree polynomial solution on p1, p2, and τ [44]. For

example, steps 3 and 4 in the next iterations yield the

following polynomials:

F
(1)
1 (p, τ) = 0.1p2 + 5 · 10−3p21 + 0.01p1p2τ

− 4.17 · 10−6p41 + 5 · 10−4p31τ + 5 · 10−3p22τ
2 (87)

ζ
(2)
1 (p, τ) =

π

2
+ 0.1p1 + 0.1p2τ

+ 5 · 10−3p21τ + 5 · 10−3p1p2τ
2 (88)

F
(2)
1 (p, τ) = 0.1p2 + 5 · 10−3p21 + 0.01p1p2τ

− 4.17 · 10−6p41 + 5 · 10−4p31τ + 5 · 10−3p22τ
2 (89)

ζ
(3)
1 (p, τ) =

π

2
+ 0.1p1 + 0.1p2τ

+ 5 · 10−3p21τ + 5 · 10−3p1p2τ
2 (90)

F
(3)
1 (p, τ) = 0.1p2 + 5 · 10−3p21 + 0.01p1p2τ

− 4.17 · 10−6p41 + 5 · 10−4p31τ + 5 · 10−3p22τ
2 (91)

ζ
(4)
1 (p, τ) =

π

2
+ 0.1p1 + 0.1p2τ

+ 5 · 10−3p21τ + 5 · 10−3p1p2τ
2 (92)

The final Picard iteration leads to

z1(p) = ζ
(4)
1 (p, r) =

π

2
+ 0.1p1 + 0.1p2

+ 5 · 10−3p21 + 5 · 10−3p1p2 (93)

that is, the polynomial that represents the set of states Z1 at

t = r. In this example, note that the iterations converged in two

steps as ζ
(4)
1 (p, τ) = ζ

(3)
1 (p, τ) = ζ

(2)
1 (p, τ), but this is not a

general case as mentioned in step 5 (see also [44]). To further

obtain z2(p) at time t = 2r, z1(p) shall be used as initial

condition for the next round of Picard iterations, starting at

step 1. Notice that the expansion point zc is recalculated from

z1(p) for p = 0, which is a standard practice when applying

Taylor polynomials [31], [35]. In this example, this expansion

point does not change, but it could in general.

APPENDIX C

INTERVAL BOUNDS OF A POLYNOMIAL SET

A computationally efficient method to estimate the boundary

of a general polynomial set (5) is required. Herein, an interval

over-approximation

[y̌ − ŷ, y̌ + ŷ] = interval(y(p)) ⊇ Y (94)



is used. The polynomial vector y(p) of (3) is separated into

the addition of: i) a constant vector y(0), ii) a polynomial

vector with even monomial terms ye(p), and iii) a polynomial

vector with odd monomial terms yo(p), i.e., y(p) = y(0) +
ye(p) + yo(p).

10 The range of even monomials is the interval

[0, 1] = 0.5+0.5·[−1, 1], whereas the range of odd monomials

is the interval [−1, 1]. Interval analysis [45] yields

y̌ = y(0) + 0.5
∑

u

ye,u (95)

ŷ = 0.5
∑

u

|ye,u|+
∑

v

|yo,v| (96)

where the vectors ye,u and yo,v contain the coefficients of the

monomials forming the polynomial vectors ye(p) and yo(p),
respectively. The absolute value in (96) is taken element-wise.
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