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Abstract—This paper proposes a component-based dual de-
composition of the nonconvex AC optimal power flow (OPF)
problem, where the modified dual function is solved using the
alternating direction method of multipliers (ADMM). This paper
is the first to conduct extensive numerical analysis resulting in
the identification and tabulation of the algorithmic parameter
settings that are crucial for the convergence of ADMM to near-
optimal (possibly globally optimal) solutions on a vast array of
test instances, despite the nonconvexity of the OPF problem.
Moreover, this work provides a deeper insight into the geometry
of the modified Lagrange dual function of the OPF problem and
highlights the conditions that make this function differentiable.

NOTATION

A. Input data and operators

B Set of buses in the power network.

B; Set of buses connected to bis

beh Shunt susceptance (p.u.) at hus

g Shunt conductance (p.u.) at biis

h . ) .

bfj ghargmg susceptance (p.u.) in themodel of line
1.

0y Constant coefficient$) term of generatoy’s cost
function.

c1? Coefficient §/MW) of the linear term of generator

g's cost function.

Coefficient §/MW?) of the quadratic term of

generatorg’s cost function.

g Set of all generatorgg, i) in the power network
such thatg is the generator and is the bus
connected to it.

Gg; Set of all generators connected to hus

i Imaginary unit.

L Set of all transmission lineg; where i is the
“from” bus.

Ly Set of all transmission lineg wherei is the “to”
bus.

p9/q%  Active/reactive power demandVi(W /MVAr) at
busi.

EZX Apparent power ratingMVA) of line ij.

05 Lower limit of the difference of voltage angles of

busesi and ;.

—A - .

0, Upper limit of the difference of voltage angles of
. busesi and .

ot Phase shiftRadians) of phase shifting transformer

connected between busesnd j (65" = 0 for a
transmission line).

Tij Tap ratio magnitude of phase shifting transformer
connected between busésand j (r;; = 1 for a
transmission line).

T;; Complex tap ratio of a phase shifting transformer
(T = 73;0").

Yi; Series admittance (p.u.) in themodel of lineij.

S {e} Imaginary value operator.

R {e} Real value operator.

o/e Minimum/maximum magnitude operator.

o] Magnitude operator/Cardinality of a set.

o Conjugate operator.

k Iteration number.

p ADMM penalty parameter.

B. Decision variables

p?/q]  Activelreactive powerNIW /MVAr) generation of
generatorg at busi.

p‘;-](i) Duplicate ofp? at busi.

a, Duplicate ofg/ at busi.

pij/qi; Activelreactive power NIW/MVAr) flow along
transmission line;.

Pij,  Duplicate ofp;; at busi.

¢ij,,  Duplicate ofg;; at busi.

Vi Complex phasor voltage (p.u.) at bus(V; =
Duplicate ofv; at lineij such thatj € ;.
Duplicate off; at lineij such thatj € B;.
Vector of Lagrange multipliers.

Yigig

i(ij)

C. Acronyms

AC Alternating current.

ADMM Alternating direction method of multipliers.
GNLP Global nonlinear programming.

KKT  Karush-Kuhn-Tuckeconditions.

NLP Nonlinear programming.

OCD  Optimality conditions decomposition.



OPF Optimal power flow. numerical analysis and specifies the algorithmic parameter

settings that are crucial for the convergence of the prapose

component-based dual decomposition method on a vast array
The alternating current (AC) power flow equations, whicbf test instances. On the other hand, OCD methods [18]-[22]

model the steady-state physics of power flows, are the linalely on matrix factorization [26] to parallelize the comatibn

pins of a broad spectrum of optimization problems in eleatri of the Karush-Kuhn-Tuckef(KKT) conditions. However, as

power systems. Unfortunately, these nonlinear equatioes af yet, these methods are not amenable to decompositions in

the main sources of nonconvexity, which makes these prabrms of components.

lems notorious for being extremely challenging to solvangsi o .

global nonlinear programming (GNLP) solvers. Thereford- Contributions of this work

the research community has focused on improving interior- Against this background, this paper is the first to conduct

point-based nonlinear optimization methods (IPM) to cotapuextensive numerical analysis on the application of ADMM to

feasible solutions efficiently [1], [2]. Although these rhetls solve the augmented Lagrange dual function of the AC OPF

only (theoretically) guarantee local optimality, they bedween problem. The paper also numerically shows that the proposed

shown, thanks to tight convex relaxations [3]-[7], to reacalgorithm converges to the same solutions obtained from the

near-optimal (possibly globally optimal) solutions on #ie centralized IPM. In more detail, this paper advances thie sta

known test cases in the literature. This paper capitalizes of the art in the following ways:

this to nUmerica"y show that the proposed distributed meth « Extensive numerical simulations or2 test cases from
solves the modified dual problem of the nonconvex AC OPF  MATPOWER [2], PEGASE [27] and NESTA v6 [28]
problem to near optimality, possibly to global optimalign instances show that the proposed algorithm converges to
all the considered test cases. the same solutions obtained from the centralized IPMs.
A. State-of-the-art » The algorithmic parameter settings that are crucial for
) o o convergence are identified and tabulated.

There is a plethora of existing works on distributed OPF. | A deeper insight into the geometry of the modified

These can be broadly classified into three categories, dual Lagrange dual function of the OPF problem shows that

decomposition methods [8]-[17], optimality conditions-de s function can be nonsmooth for small values of the
composition (OCD) methods [18]-[22] and sparse SDP de- aApmm penalty parameter.

composition methods [23], [24]. The dual decompositioftntec

nigues underlying the dual-decomposition-based digkibu C. Notation

OPF methods in the literature can in turn be classified into tw Al vectors are column vectors unless otherwise specified,
categories: region-based decompositions [8]-[13], [IB],' and1 is an all-ones vector of length depending on the context.
and component-based decompositions [14], [15], [17]. Thehe inner product of two vectors, y € R” is delineated by
focus of this study revolves around the latter decompcrsitiq%w .= 2Ty, wherez” is the transpose cf. The Euclidean
techniques because they preserve privacy with respect #m of a vectorr € R” is denoted byi|z|| := \/(z, ) and

all components (generators, transformers, loads, buses, lifgs nonnegative orthant iR™ is denoted byR”:.
etc.) and are flexible enough to incorporate discrete detisi

variables to suit a wide variety of optimization applicato II. THE OPFPROBLEM

in power system operations such as optimal transmissionn a power network, the OPF problem consists of finding
switching, capacitor placement, transmission and distioh  the |east-cost dispatch of power from generators to satisfy
network expansion planning, optimal feeder reconfigunatiothe load at all buses in a way that is governed by physical
power system restoration, and vulnerability analysis,dme |aws, such as Ohm’s Law and Kirchhoff’s Law, and other
a few. On the downside, dual-decomposition-based AC ORdthnical restrictions, such as transmission line thefimit
methods have no theoretical guarantee of convergence $®Canstraints. Knowing thag {VZVJ*} = v,;v; cos (6, — ;) and

the (primal) OPF problem is nonconvex. Nonetheless, tr@{yivj*} ‘= v, sin (6; — 0), the OPF problem irpolar
paper numerically shows that under the right conditions, thgrm can be written as

proposed distributed method can converge to near-optimal minimize Z £ 9 (1a)
(possibly globally optimal) solutions. Unlike [14]-[16]23], p{.a; visbi, (GDed

[24], [24], which solve a convexified version of the OPF %P %

I. INTRODUCTION

problem, this paper tackles the nonlinear nonconvex AC OPF SUPject to
directly. Convex relaxations are appealing because they ar p? <p] <P, (9,) €G  (1b)
computationally conducive but their main disadvantagdag t ¢ < <, (9,§) €G (10)
they do not always yield feasible solutions. Furthermore, i *" < <8 ()
contrast to [17], the work in this paper conducts extensive Yi =Y = Ui A v

95 < 6:— 6, <0, (i,j)el  (le)

INote that the OPF problem in [12] and [25] is decomposed in tesms d N h 2 )
buses, which can be thought of as the maximum number of regicnpdmwer Z p! —pf = Z pij + 955, 1eB (1f)

network. (9,3)€G JEB;



Sodl == a7, ieB  (lg) Yod, -l =) ay, -, ieB (8

(9,9)€G JEB; (9,1)€G JEB;
Dij = 92}%‘2 — gijvivj cos (0; — 0;) Dij = gfjviij) = GijVi(s;) Vj(js) COS (9i(ij) - 9j(j,-))
+ bijviv;sin (6; — 6;), (i,j) e L (1h) +bijVig, Vi SID (91-(”,) - Hj(m) , (,5) € L (89)
qij = b;0] — bijviv; cos (6; — 0) Gij = b507 ) = bijVic Vi €08 (i) — 05)
_ gijv;vj sin (6; — 6;) (i,j) e £ (i) —GijVie,; Vi S (i, — 05,0 ) (i,5) € £ (8h)
pji = g5;v; — gjivjvicos (0; — 0;) 2

— c .. . . J . — .
Pji = 95iV5 ;5 — 951V Vi) €08 (aﬂji) 9%'1))

' bjw;vi sin (67 = 0:), (i,j) € £ (1)) H0ji0550) Vi) S0 (0,0 — b)) (1,5) € L (8i)
o e By, . _f.
Gt = 05t I?N?;UZ C(;S)(aj %) ()eL (K gji = btjj'iUJQ’m) = bji0j Vi, 08 (0,0 — bicsy))
— g4iVv; 8In (05 — 0; 1,]) € . . .
P Lo o =95V Viyy S0 (0,0 = i) s (1,5) €L (8))
/P3G < 5, (i,j) € LULy (1)) where
c o (9 9 o) ;
vt veith @ 1= |0, ) e (Pign 0 Vi ) e, |
where, g¢ = R 2 8 pe = G2 L g = and ' ¢
It T (7 74 IT17 (7Y
o g9 g .. .. . .
%{YS} bii — C‘{Yi?} co—opdyr 8L e o == (p”“’q”'”)(g,i)eg’(p”“”q”“”’”“e’)(zyj)eﬁuat '
Ty J0 Vi T S\ T 0 95 T gi 2 (0 YT Now, by relaxing the consensus constraints (2)—(7), the (pa

L beh Y Y7 tial) Lagrangian function of problem (8) is given b
S {Y;; -y }' it = %{Tj} andbj; := g{TJ; }’ and : gL(w?z,)\) = Z (F}Lg (»?)) —f— g)\,wg— z), g 9)
F(p?) = 22 (p9)° + 19 (p?) + 0. The OPF in (1) is a (9.))€G
nonconvex nonlinear optimization problem that is proven t§here
be NP-hard [29]. The nonconvexities stem from equality comd = [()‘g,w )‘g,i)(g,i)eg ) ()‘Pijv)‘qij’Avi.j’Agij)(i,j)eLuﬁt} ’
straints (1f)—(1k), which include nonconvex voltage ketim is the vector of Lagrange multipliers associated with cosse
terms multiplied by nonconvex sine and cosine functions éPnstraints (2)—(7). Accordingly, the Lagrange dual fioret
the angles, and a quadratic function of the voltage, which I
also nonconvex in this equality constraint setting as itdbes D (X) :=minimize L (z, z,A) .

the boundary of the sefu?ju € [v, 7]} 2 subject o (1b), (1¢), (1)), B)~(8)  (10)

I1l. COMPONENTBASED DUAL DECOMPOSITION The dual can now be decomposed in terms of components as
follows
The OPF problem in its native form in (1) is not separable ,_ g (v b ( g g )
in terms of components. Moreover, relaxing the coupling—conD (A) = Z DY (M) + EZBDi ()‘i)gegi 7(>‘Zﬂ)jeBi
straints in (1f) and (1g) is not enough to bestow a component- (e4)€9 | '
based separability. Towards this aim, the following vaeab + Z Di; (Nij, Aji) s (11)
are duplicated . (m‘)eﬁg .
pi = pgma (9,7) € G, (2 \;‘Vhere Aj [)\: [i‘\m’ i‘\q,i] ’)\)‘U] ::F' [/\Il)[w)‘flz]w /}:’u’)‘az‘j] a(;ld |
g g ) ji = [Apji» Agjis Avjis Agy; |- Finally, the Lagrange dua
G = iy (9:9) €9, ®) problem is given by
Dij = Pijuy> (’L,]) cLuU £t7 (4) m;?X D ()\) . (12)
Qij = Qijgiys (1,7) € LUL, (5) The main reasons for solving the Lagrange dual function
Vi, = Uiy (i,7) € LU Ly, (6) (10) instead of the primal (8) is that, first, the former is

the pointwise infimum of a family of affine functions iA
and is therefore concave, even though the primal problem (8)
is nonconvex. Subsequently, first-order methods from conve

92’(”) = 9i7 (Zaj) eLU £t7 (7)
and the OPF problem now becomes

minimize > W) (82) gptimization can be applied to solve the dual. Second, the
(9:1)€G dual is separable in terms of components and can therefore
subject to (1b), (1c), (1), (2)—(7) (8b) be solved in a distributed fashion, thus preserving privacy
v; < vy, <, (i,7) € LUL; (8c) However, in this case, since the objective functions in (11)
A N o are neither finite nor strictly convex (and also the Lagrange
055 < iy = Oy <03y (7)€L (8d) function in (9) is unbounded below i and z), the dual

d h o ) . . .
Z pg(i) —pd = Z Pije, + 952, ieB (8e) function in (9) is unbounded.
(9,9)€G JEB;
2The method in this paper was also applied to the OPdtangular form

but the results are not documented here because they werégnificantly
different than the polar form ones.



IV. M ODIFIED DUAL FUNCTION AND ADMM

To make the Lagrangian function finite and strictly conve
it is modified as follows

Ly(@,2A) =L@ 2N+ Sz —=", (19

X

Pvo
2

_ okt

i(ij)

)2 + (01- — gkt

L(ij)

)2>) . (17a)

(17b)

(-

subject to (8e), (8f)
Where

b._ 9 g 0. iy -
zi T (pl(l) ) ql(l)) (g,’i)eg ) Ul? 917 (pl](i) bl ql7(7))JEBZ .

which is also known as the augmented Lagrange function, ahlde effect of adding the ADMM penalty term (with > 0)

the augmented Lagrange dual function would be
D, (X) :=minimize L, (x, z, A)

subject to (1b), (1c), (1), (8¢c)—(8j)

(14a)
(14b)

To preserve the separability of the problem, ADMM is useﬁdi

is twofold. First, it makes the local cost functions finite
and strictly convex and therefore the modified dual function
bounded. Second, it makes the modified dual function smooth
for large values op. For small values of, the concave mod-

ed dual functionD, (X) is typically nondifferentiable. In-

to approximate (14). More specifically, generators nowesolvdeed’ usingdanskiris theorem [30]-[32], the subdifferentials

)

k R k
DY, ()\ng ) = minimize > <ff’ (r!) + <>\gv !
¢ 9€G;

2 2
w0 (-0t s (e -at)’))  asa
subject to (1b), (1c) (15b)
wherez? := [p?, 7], and transmission lines solve
| k k A k k |
D ()‘z’ja’\ji) = mm;rnze { <{)‘ija)‘jz} »-’Bz‘j> +

>

(Lm)e{(4,5)U(,1)}

Po 2 2
(26 ((vlk — Ulg) T (alk - Ql(lm) )

+ B ((pzm )+ (a0 - q{“mu))2>> } (16a)
subject to v; < w;,,, < T, v; < v, <5, (16b)
QiAj < Oigyy = Oy < giAﬁ (16¢)

Pij = gfjvim = 9iVicip Vi €08 (Biyy — Ojisi))
+ bij Vi Vg S0 (O — 05is0) 5 (16d)

Gij = bfjv?(m = bijVi, Vg €08 (i) — 05
= 9ijVigij Vi S0 (ei(z‘j) - 9]‘(_7.1.)) ) (16e)

pji = g;iv?(m = G550 Vigssy €08 (Oisey — i)
+ bjivjo Vigsy) S0 (05 — i) (16f)

Gi = b;ivﬂzum = bjivj;,) Vi 08 (ej(ji) - ei(u))
= GjiVj i) Vigsj) S (3.7’(.7'7» - 91’(1.1)) ] (169)
JPh @ <5 \Ji <5y, (16h)
where wlij = [pij, ais, Uiz Oigizy Piis Qi U.j(ji)’ej(jq‘,)]' On

the other hand, buses solve

ot ( v/ geg; Y/ jes;
L. . g:k g g
minimize Z ( <>‘i , {pz‘<qu’<i>}>+

Zi 9€G;

Ppq gk+1 g )2 (g,k+1_ g )2

9 ((pl Di + 14 9y +
Z (— <Ai‘€j7 [pij(,;)>Qij(i)7Uia9i}> +

JEB;

Ppq E+1 2 k+1 2

9 ((pij —Dije,) (2 — i) ) +

of D,(A) aredD,(A) ={x—2:D,(A\),x € X,z € Z},
where X is the feasible set defined by constraints (1b), (1c),
(11), (8c), (8d) and (8g) to (8j) andZ is the feasible set
defined by constraints (8e), (8f). More specifically, as the
(nonconvex) transmission line subproblems in (16) can have
multiple (globally) optimal solutions for a given vecta,
the subdifferential9D, () may be not be unique and the
modified dual functionD, (X) can be nonsmooth. In more
detalil,
g, =[x—21€0D,(N),

which is a subgradient d, (A), may not be unique whemis
small. On the other hand, for large valuesofg,, is unique
and is therefore a gradient d, (A), i.e. g, = VD, ().
Finally, at each iteratiotk, each bug € B updates its (local)
Lagrange multipliers using the subgradient projectionhoet
as follows,

Ak :)\kerg’;,

Wherep = [(ppq)gx‘m ’ (qu7ppqa/)v0, pu9>wu£t‘:|.
The component-based ADMM algorithm is described in
Algorithm 1.

(18)

Algorithm 1: Distributed algorithm

1 Initialization: X' =0, p >> 0, e < 10~* and, for all

. J+p)  9?+a)

ieB, 2= B LN ,0,07170}

2. while Hg’;H > ¢ do

3. Generators and lines solve (15) and (16) respectively
in parallel, and senety"* " andz;"*" to adjacent

buses.

4 Buses solve (17) in parallel and update their (local)
Lagrange multipliers as in (18).
5. Buses sendz?’k“, A, Ai; and Aj; to adjacent
generators and lines .
60 k<« k+ 1
7. end while
Definiton 1: Let P, be a feasible primal solution

computed centrally by an IPM solver and B, ") be a
solution of the approximate modified dual function computed
in a distributed fashion by Algorithm 1, initialized with ¢h
same algorithmic starting point used to flﬁ’ﬂ,M. Then the gap



between the feasible primal solutidF‘ﬂ,M and its associated TABLE |
approximate modified dual function optimal valig, (AT) is SUMMARIZED PARAMETER SETTINGS OFALGORITHM 1.

given by Setting | ppq Do €
Phy—D, ()\T) A 300 | 300000 | L.E-04
AMDgap := — Q5 x 100. B 400 | 40000 | 1.E-04
IPM C 400 400 | 1.E-04
Note that in Definition 1, ifPL,, is globally optimal, then D 400 | 4000 | 1.E-04
Dawvp ()\T) is an accurate approximation of the modified dual E 100 | 10000 | 1.E-04
function. F 1000 | 1000 | 1.E-04
Definition 2: Let Pl = f (p?") be a feasible primal G 100 100 | 1.E-04
solution computed in a distributed fashion by Algorithm 1, H 100 | 100000 | 1.E-04
initialized with the same algorithmic starting point used t I 500 | 500000 | 1.E-04
find P,TPM. Then the gap between the feasible primal solution J 400 | 400000 | 1.E-04
Py and Ploy is given by K 400 | 800 | 1.E-04
pt _ pt L 10000 | 100000 | 1.E-04
ROgap:= <'P'\"TAD'\"M> x 100. M 1000 | 10000 | 1.E-04
Pipw N 20000 | 200000 | 1.E-06
V. NUMERICAL EVALUATION o 1000 | 100000 | 1.E-04
Algorithm 1 is implemented in MATLAB and the inter- P 2000 | 20000 | 1.E-04
facing between AMPL and MATLAB is made possible by Q | 10000 | 100000 1.E-06

AMPL’s application programming interface. The simulaton
are all carried out on a computing platform with 10 Intel Xeon TABLE Il

E5-2687W v3 CPUs at 310GHZ, 64-bit Operating System, CONVERGENCE OFALGORITHM 1 ON MATPOWER INSTANCES.
and 128GB RAM. In all simulations, AMPL [33] is used as
a frontend modeling language for the optimization problemase| £F,,

Objective ($) Gap (%)
Ploww | Do (AT) AMD RO T

%
@
&

118 | 129660.69| 129660.97| 129660.71| -1.55E-05| -2.09E-04 | 635
300 | 719725.10| 719727.91| 719725.10| -5.75E-07 | -3.90E-04 | 6202

along with KNITRO 10.2 [34] as a backend solver for the 5 | 17551.89 | 17551.66 | 17551.89 | -1.50E-05| 1.30E-03 | 1229 | A
nonconvex original OPF problem in (1) and the nonconvex linéww | 314397 | 314393 | 314398 | -8.79E-05| 147E-03 | 972 | A
. . 9 5296.69 | 5296.90 | 5296.71 | -4.39E-04 | -4.02E-03| 454 | B

10
and bus subproblems in (16) and (17) respectively. Gemsrate o sos162 | B0s143 805155 | 18005 114503 [ 627 | G
have closed for_m solutions as In [15]. ) 24 | 63352.20 | 6335220 | 63352.20 | -1.25E-06 | 8.52E-06 | 1290 | C
The centralized IPM solutions, shown undeFp,, 30 576.89 576.93 576.92 | -4.37E-03 | -7.05E-03| 1838 | B
in Tables Il and Ill, are initialized with vao = 30 8906.14 | 8906.44 | 8906.14 | -5.92E-07| -3.37E-03| 894 | C
g =9 P . o _ 39 | 41864.18 | 41864.17 | 41864.19 | -3.03E-05| 1.96E-05 | 3478 | D
[0'5 (Bi +pi) ,0.5 (ﬂi +qi)} for all (g,z) € g Tij = 57 | 41737.79 | 4173471 | 41737.79 | -4.29E-07 | 7.37E-03 | 856 | D
(0,0,1,0,0,0,1,0] for all (i,j) € L, and 200 89 | 5819.81 | 5820.04 | 5819.99 | -3.08E-03| -3.95E-03| 8929 | E

' 1

D
D

[0.5 P +77),05 (gg +q§) ,0,0,1,0} for all i € B. This
initialization is the same one used as a starting point fer t
IPM solver at each iteratiok in Algorithm 1. The parameter

settings of Algorithm 1 are summarized in Table | and thehird, this disproportion in setting,, and p.s is reflected
results are shown in Tables Il and Ill for MATPOWERexactly in setting the values of the step size in the muttipli
[2], [27] and NESTA v6 [28] instances respectively. Thepdate (18). More specifically, the step sizes for updatirey t
NESTA test cases are designed specifically to incorporate kgyltage and angle multipliers are also 3 orders of magnitude
network parameters such as line thermal limits and smalban%rger than the step sizes for the active and reactive power
differences, which are critical in optimization applicats.  multipliers. To see the significance of this, all the testdnses
Tables Il and Il show that fore = 10, after careful with this specific parameter tuning would otherwise either
individualized tuning of parameters, Algorithm 1 convesgegiverge or require more thar® iterations to converge. Some
to feasible solutions with negligible AMDgap and ROgap oRotoriously difficult cases are MATPOWER's case 5, NESTA'S
all the 72 test cases. cases 30fsr APl and 189API for which very few other
There are three key contributors behind the convergencedgrameter settings, besides the corresponding ones ia Tabl
Algorithm 1 on all the72 cases. First, parametess, andp.s  seem to make Algorithm 1 converge. Furthermore, even after
are set to high values, typically in the range80, 20000] and  exhaustive parameter tuning, the convergence on somentest i
[100, 500000], respectively. Second, most test cases requiggances (like NESTA's 300 bus systems) is substantiallyeslo
settingp,p to at least 3 orders of magnitude larger tha). than others. Nonetheless, this still suggests that Algorit.

_ o _ , ~converges even on thesificult test instances.
3Note that the stopping criterion in Algorithm 1 requires atcal authority

to compute the norm of the subgradient; nonetheless, if aalemithority is Itis eVider_]t from Tables Il and IlI that the_re is no princigle
unavailable, the stopping criterion can be defined as in §tZL4]. way of setting the parameters of Algorithm 1. However,

=)



TABLE Il
CONVERGENCE OFALGORITHM 1 ON NESTA V5 INSTANCES.
Objective ($) Gap (%)
Case | PAly [ Plown | Do (AT) AMD | RO I set
Normal Operating Conditions
3 5812.64 5811.90 5812.64 | -1.18E-06 | 1.28E-02 901 C
4 156.43 156.54 156.43 -9.84E-04 | -6.93E-02 823 F
5 17551.89 | 17551.66 | 17551.89 | -2.03E-05| 1.31E-03 1302 A
6_c 23.21 23.21 23.21 -1.12E-03 | -4.60E-04 620 G
6_ww 3143.97 3143.76 3143.97 3.50E-06 | 6.72E-03 1870 H
9 5296.69 5296.90 5296.71 | -4.39E-04 | -4.02E-03 454 B
14 244.05 244.06 244.12 -2.58E-02 | -4.10E-03| 8195 H
24 63352.20 | 63352.20 | 63352.20 | -1.22E-06 | 7.89E-06 1290 C
29 29895.49 | 29895.64 | 29895.93 | -1.46E-03 | -4.89E-04 | 7394 H
30_as 803.13 803.10 803.13 -7.54E-04 | 3.79E-03 6982 H
30_fsr 575.77 575.80 575.80 -6.16E-03 | -5.62E-03 | 3599 H
30 204.97 204.98 204.97 -2.38E-03 | -4.96E-03 | 18061 H
39 96505.52 | 96506.35 | 96505.52 | -5.09E-07 | -8.61E-04 709 H
57 1143.27 1143.31 1143.27 | -1.76E-04 | -3.50E-03 | 27085 H
73 189764.08 | 189758.34| 189764.08| -1.58E-06 | 3.03E-03 4264 H
89 5819.81 5820.01 5819.99 | -3.09E-03 | -3.44E-03 | 8932 E
118 3718.64 3718.60 3718.71 | -1.91E-03 | 8.49E-04 3547 E
162 4230.23 4230.38 4230.23 | -8.34E-06 | -3.57E-03 | 23978 H
189 849.29 849.26 849.29 1.07E-05 | 3.74E-03 2444 G
300 16891.28 | 16885.83 | 16893.58 | -1.36E-02 | 3.23E-02 | 289611 | |
Congested Operating Conditions (API)
3 367.74 367.61 367.74 8.53E-04 | 3.42E-02 2475 D
4 767.27 767.25 767.27 6.20E-04 | 3.77E-03 133 D
5 2998.54 2998.74 2998.61 | -2.45E-03 | -6.83E-03 | 3282 D
6_¢c 814.40 814.29 814.40 1.05E-03 | 1.35E-02 299 D
6_ww 273.76 273.73 273.77 -1.93E-03 | 1.12E-02 1070 J
9 656.60 656.63 656.60 -2.45E-04 | -5.08E-03| 3923 D
14 325.56 325.77 325.56 -2.40E-04 | -6.45E-02| 4166 K
24 6421.37 6422.37 6422.87 | -2.33E-02 | -1.56E-02 1308 B
29 295782.68| 295778.85| 295784.89| -7.47E-04 | 1.29E-03 | 10799 J
30_as 571.13 570.30 571.11 3.80E-03 | 1.45E-01 | 22147 D
30_fsr 372.14 372.04 372.20 -1.59E-02 | 2.52E-02 | 95048 | Q
30 415.53 415.84 415.51 3.78E-03 | -7.65E-02 | 9222 D
39 7466.25 7466.48 7466.20 7.18E-04 | -3.02E-03 | 20692 D
57 1430.65 1430.78 1430.66 | -1.08E-04 | -8.83E-03| 2607 K
73 20123.98 | 20119.88 | 20124.75 | -3.83E-03 | 2.03E-02 | 34083 J
89 4288.02 4286.91 4289.44 | -3.31E-02| 2.61E-02 | 31924 J
118 10325.27 | 10327.60 | 10326.17 | -8.71E-03 | -2.25E-02 | 10247 J
162 6111.68 6111.94 6111.69 | -2.30E-04 | -4.21E-03 | 9034 M
189 1982.82 1983.42 1983.66 | -4.20E-02 | -3.03E-02 | 162007 | N
300 22866.01 | 22864.20 | 22866.05 | -1.63E-04 | 7.94E-03 | 83484 | O
Small Angle Difference Conditions (SAD)
3 5992.72 5991.61 5992.72 | -3.06E-08 | 1.85E-02 2573 H
4 324.02 324.01 324.02 -7.64E-05| 2.71E-03 711 H
5 26423.32 | 26422.31 | 26423.33 | -4.55E-05| 3.83E-03 2472 H
6_C 24.43 24.43 24.44 -3.13E-02 | -1.44E-02| 6704 H
6_ww 3149.51 3149.11 3149.51 2.19E-05 | 1.25E-02 6779 H
9 5590.09 5589.08 5590.09 4.93E-06 | 1.82E-02 6430 H
14 24415 244.23 244.27 -5.05E-02 | -3.48E-02| 16453 H
24 79804.96 | 79805.84 | 79804.99 | -3.51E-05| -1.10E-03 | 106967 | Q
29 46933.26 | 46915.71 | 46933.88 | -1.31E-03 | 3.74E-02 | 20144 | H
30_as 914.44 913.83 914.44 1.61E-04 | 6.72E-02 | 46319 | H
30_fsr 577.73 577.46 577.73 -2.87E-04 | 4.63E-02 4876 H
30 205.11 205.15 205.12 -1.49E-03 | -1.93E-02| 20242 | H
39 97219.04 | 97218.00 | 97219.04 | -2.46E-06 | 1.07E-03 5249 H
57 1143.88 1144.07 1143.88 3.54E-04 | -1.60E-02 | 39382 H
73 235241.70| 235249.73| 235241.74| -1.98E-05| -3.42E-03| 5799 L
89 5827.01 5827.05 5827.02 | -2.19E-04 | -6.09E-04 | 33386 | H
118 4324.17 4323.01 4324.19 | -5.20E-04 | 2.68E-02 | 22618 H
162 4369.19 4369.73 4369.78 | -1.35E-02 | -1.23E-02 | 18401 L
189 914.61 914.61 914.61 -2.27E-04 | -1.26E-04| 10850 | M
300 16910.23 | 16904.58 | 16910.29 | -3.91E-04 | 3.34E-02 | 52670 P

extensive simulations show that they can be clustered in
a summarizing table of plausible parameter settings. Some
parameter settings, like H for example, seem to work on the
most number of test cases. This stands in contrast to setting
Q and P which are tailored specifically to their respectiwt te
cases in Table IIl.

VI. CONCLUSION

The method is numerically demonstrated to converge to fea-
sible near-optimal (if not optimal) solutions to the noneex
AC OPF problem, corroborated by tight convex relaxations,
on all the 72 considered test cases. Despite the absence of
a principled way to set up the parameters of the algorithm,
this work demonstrates that the ADMM penalty parameters
should be set to at least0, in order to ensure differentiability
of the modified dual function. This not only affects the
speed of convergence, but can mean the difference between
convergence and divergence. More interestingly, in mesta
convergence can only be witnessed if the penalty parameters
for the voltages and angles are set to at least one order of
magnitude higher than those of the active and reactive power
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