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Abstract—This paper proposes a component-based dual de-
composition of the nonconvex AC optimal power flow (OPF)
problem, where the modified dual function is solved using the
alternating direction method of multipliers (ADMM). This paper
is the first to conduct extensive numerical analysis resulting in
the identification and tabulation of the algorithmic parameter
settings that are crucial for the convergence of ADMM to near-
optimal (possibly globally optimal) solutions on a vast array of
test instances, despite the nonconvexity of the OPF problem.
Moreover, this work provides a deeper insight into the geometry
of the modified Lagrange dual function of the OPF problem and
highlights the conditions that make this function differentiable.

NOTATION

A. Input data and operators

B Set of buses in the power network.
Bi Set of buses connected to busi.
bsh
i Shunt susceptance (p.u.) at busi.
gsh
i Shunt conductance (p.u.) at busi.
bch
ij Charging susceptance (p.u.) in theπ-model of line

ij.
c0gi Constant coefficient ($) term of generatorg’s cost

function.
c1gi Coefficient ($/MW) of the linear term of generator

g’s cost function.
c2gi Coefficient ($/MW2) of the quadratic term of

generatorg’s cost function.
G Set of all generators(g, i) in the power network

such that g is the generator andi is the bus
connected to it.

Gi Set of all generators connected to busi.
i Imaginary unit.
L Set of all transmission linesij where i is the

“from” bus.
Lt Set of all transmission linesij wherei is the “to”

bus.
pd
i/q

d
i Active/reactive power demand (MW/MVAr) at

bus i.
sij Apparent power rating (MVA) of line ij.
θ∆ij Lower limit of the difference of voltage angles of

busesi and j.

θ
∆

ij Upper limit of the difference of voltage angles of
busesi and j.

θshift
i Phase shift (Radians) of phase shifting transformer

connected between busesi and j (θshift
i = 0 for a

transmission line).
τij Tap ratio magnitude of phase shifting transformer

connected between busesi and j (τij = 1 for a
transmission line).

Tij Complex tap ratio of a phase shifting transformer
(Tij = τije

iθshift
i ).

Yij Series admittance (p.u.) in theπ-model of lineij.
ℑ{•} Imaginary value operator.
ℜ{•} Real value operator.
•/• Minimum/maximum magnitude operator.
|•| Magnitude operator/Cardinality of a set.
•∗ Conjugate operator.
k Iteration number.
ρ ADMM penalty parameter.

B. Decision variables

pgi /q
g
i Active/reactive power (MW/MVAr) generation of

generatorg at busi.
pgi(i) Duplicate ofpgi at busi.
qgi(i) Duplicate ofqgi at busi.
pij/qij Active/reactive power (MW/MVAr) flow along

transmission lineij.
pij(i) Duplicate ofpij at busi.
qij(i) Duplicate ofqij at busi.
Vi Complex phasor voltage (p.u.) at busi (Vi =

|Vi| 6 θi = vi 6 θi).
vi(ij) Duplicate ofvi at line ij such thatj ∈ Bi.
θi(ij) Duplicate ofθi at line ij such thatj ∈ Bi.
λ Vector of Lagrange multipliers.

C. Acronyms

AC Alternating current.
ADMM Alternating direction method of multipliers.
GNLP Global nonlinear programming.
KKT Karush-Kuhn-Tuckerconditions.
NLP Nonlinear programming.
OCD Optimality conditions decomposition.



OPF Optimal power flow.

I. I NTRODUCTION

The alternating current (AC) power flow equations, which
model the steady-state physics of power flows, are the linch-
pins of a broad spectrum of optimization problems in electrical
power systems. Unfortunately, these nonlinear equations are
the main sources of nonconvexity, which makes these prob-
lems notorious for being extremely challenging to solve using
global nonlinear programming (GNLP) solvers. Therefore,
the research community has focused on improving interior-
point-based nonlinear optimization methods (IPM) to compute
feasible solutions efficiently [1], [2]. Although these methods
only (theoretically) guarantee local optimality, they have been
shown, thanks to tight convex relaxations [3]–[7], to reach
near-optimal (possibly globally optimal) solutions on allthe
known test cases in the literature. This paper capitalizes on
this to numerically show that the proposed distributed method
solves the modified dual problem of the nonconvex AC OPF
problem to near optimality, possibly to global optimality,on
all the considered test cases.

A. State-of-the-art

There is a plethora of existing works on distributed OPF.
These can be broadly classified into three categories, dual
decomposition methods [8]–[17], optimality conditions de-
composition (OCD) methods [18]–[22] and sparse SDP de-
composition methods [23], [24]. The dual decomposition tech-
niques underlying the dual-decomposition-based distributed
OPF methods in the literature can in turn be classified into two
categories: region-based decompositions [8]–[13], [16],[25],1

and component-based decompositions [14], [15], [17]. The
focus of this study revolves around the latter decomposition
techniques because they preserve privacy with respect to
all components (generators, transformers, loads, buses, lines
etc.) and are flexible enough to incorporate discrete decision
variables to suit a wide variety of optimization applications
in power system operations such as optimal transmission
switching, capacitor placement, transmission and distribution
network expansion planning, optimal feeder reconfiguration,
power system restoration, and vulnerability analysis, to name
a few. On the downside, dual-decomposition-based AC OPF
methods have no theoretical guarantee of convergence because
the (primal) OPF problem is nonconvex. Nonetheless, this
paper numerically shows that under the right conditions, the
proposed distributed method can converge to near-optimal
(possibly globally optimal) solutions. Unlike [14]–[16],[23],
[24], [24], which solve a convexified version of the OPF
problem, this paper tackles the nonlinear nonconvex AC OPF
directly. Convex relaxations are appealing because they are
computationally conducive but their main disadvantage is that
they do not always yield feasible solutions. Furthermore, in
contrast to [17], the work in this paper conducts extensive

1Note that the OPF problem in [12] and [25] is decomposed in termsof
buses, which can be thought of as the maximum number of regions ina power
network.

numerical analysis and specifies the algorithmic parameter
settings that are crucial for the convergence of the proposed
component-based dual decomposition method on a vast array
of test instances. On the other hand, OCD methods [18]–[22]
rely on matrix factorization [26] to parallelize the computation
of the Karush-Kuhn-Tucker(KKT) conditions. However, as
of yet, these methods are not amenable to decompositions in
terms of components.

B. Contributions of this work

Against this background, this paper is the first to conduct
extensive numerical analysis on the application of ADMM to
solve the augmented Lagrange dual function of the AC OPF
problem. The paper also numerically shows that the proposed
algorithm converges to the same solutions obtained from the
centralized IPM. In more detail, this paper advances the state
of the art in the following ways:

• Extensive numerical simulations on72 test cases from
MATPOWER [2], PEGASE [27] and NESTA v6 [28]
instances show that the proposed algorithm converges to
the same solutions obtained from the centralized IPMs.

• The algorithmic parameter settings that are crucial for
convergence are identified and tabulated.

• A deeper insight into the geometry of the modified
Lagrange dual function of the OPF problem shows that
this function can be nonsmooth for small values of the
ADMM penalty parameter.

C. Notation

All vectors are column vectors unless otherwise specified,
and1 is an all-ones vector of length depending on the context.
The inner product of two vectorsx, y ∈ Rn is delineated by
〈x,y〉 := xTy, wherexT is the transpose ofx. The Euclidean
norm of a vectorx ∈ Rn is denoted by‖x‖ :=

√

〈x,x〉 and
the nonnegative orthant inRn is denoted byRn

+.

II. T HE OPFPROBLEM

In a power network, the OPF problem consists of finding
the least-cost dispatch of power from generators to satisfy
the load at all buses in a way that is governed by physical
laws, such as Ohm’s Law and Kirchhoff’s Law, and other
technical restrictions, such as transmission line thermallimit
constraints. Knowing thatℜ

{

ViV
∗
j

}

:= vivj cos (θi − θj) and
ℑ
{

ViV
∗
j

}

:= vivj sin (θi − θj), the OPF problem inpolar
form can be written as

minimize
p
g

i
,q

g

i
,vi,θi,

pij ,qij ,pji,qji

∑

(g,i)∈G

fg
i (pgi ) (1a)

subject to

pg
i
≤ pgi ≤ pgi , (g, i) ∈ G (1b)

qg
i
≤ qgi ≤ qgi , (g, i) ∈ G (1c)

vi ≤ vi ≤ vi, i ∈ B (1d)

θ∆ij ≤ θi − θj ≤ θ
∆

ij , (i, j) ∈ L (1e)
∑

(g,i)∈G

pgi − pd
i =

∑

j∈Bi

pij + gsh
i v

2
i , i ∈ B (1f)



∑

(g,i)∈G

qgi − qd
i =

∑

j∈Bi

qij − bsh
i v

2
i , i ∈ B (1g)

pij = gcijv
2
i − gijvivj cos (θi − θj)

+ bijvivj sin (θi − θj) , (i, j) ∈ L (1h)

qij = bcijv
2
i − bijvivj cos (θi − θj)

− gijvivj sin (θi − θj) , (i, j) ∈ L (1i)

pji = gcjiv
2
j − gjivjvi cos (θj − θi)

+ bjivjvi sin (θj − θi) , (i, j) ∈ L (1j)

qji = bcjiv
2
j − bjivjvi cos (θj − θi)

− gjivjvi sin (θj − θi) , (i, j) ∈ L (1k)
√

p2ij + q2ij ≤ sij , (i, j) ∈ L ∪ Lt (1l)

where,gcij := ℜ

{

Y ∗

ij−i
bch
ij

2

|Tij |
2

}

, bcij := ℑ

{

Y ∗

ij−i
bch
ij

2

|Tij |
2

}

, gij :=

ℜ
{

Y ∗

ij

Tij

}

, bij := ℑ
{

Y ∗

ij

Tij

}

, gcji := ℜ

{

Y ∗
ji − i

bch
ji

2

}

, bcji :=

ℑ

{

Y ∗
ji − i

bch
ji

2

}

, gji := ℜ
{

Y ∗

ji

T∗

ji

}

and bji := ℑ
{

Y ∗

ji

T∗

ji

}

, and

fg
i (pgi ) := c2gi (p

g
i )

2
+ c1gi (p

g
i ) + c0gi . The OPF in (1) is a

nonconvex nonlinear optimization problem that is proven to
be NP-hard [29]. The nonconvexities stem from equality con-
straints (1f)–(1k), which include nonconvex voltage bilinear
terms multiplied by nonconvex sine and cosine functions of
the angles, and a quadratic function of the voltage, which is
also nonconvex in this equality constraint setting as it describes
the boundary of the set

{

v2|v ∈ [v, v]
}

.2

III. C OMPONENT-BASED DUAL DECOMPOSITION

The OPF problem in its native form in (1) is not separable
in terms of components. Moreover, relaxing the coupling con-
straints in (1f) and (1g) is not enough to bestow a component-
based separability. Towards this aim, the following variables
are duplicated

pgi = pgi(i) , (g, i) ∈ G, (2)

qgi = qgi(i) , (g, i) ∈ G, (3)

pij = pij(i) , (i, j) ∈ L ∪ Lt, (4)

qij = qij(i) , (i, j) ∈ L ∪ Lt, (5)

vi(ij) = vi, (i, j) ∈ L ∪ Lt, (6)

θi(ij) = θi, (i, j) ∈ L ∪ Lt, (7)
and the OPF problem now becomes

minimize
x,z

∑

(g,i)∈G

fg
i (pgi ) (8a)

subject to (1b), (1c), (1l), (2)–(7) (8b)

vi ≤ vi(ij) ≤ vi, (i, j) ∈ L ∪ Lt (8c)

θ∆ij ≤ θi(ij) − θj(ji) ≤ θ
∆

ij , (i, j) ∈ L (8d)
∑

(g,i)∈G

pgi(i) − pd
i =

∑

j∈Bi

pij(i) + gsh
i v

2
i , i ∈ B (8e)

2The method in this paper was also applied to the OPF inrectangular form
but the results are not documented here because they were not significantly
different than the polar form ones.

∑

(g,i)∈G

qgi(i) − qd
i =

∑

j∈Bi

qij(i) − bsh
i v

2
i , i ∈ B (8f)

pij = gcijv
2
i(ij)
− gijvi(ij)vj(ji) cos

(

θi(ij) − θj(ji)
)

+bijvi(ij)vj(ji) sin
(

θi(ij) − θj(ji)
)

, (i, j) ∈ L (8g)

qij = bcijv
2
i(ij)
− bijvi(ij)vj(ji) cos

(

θi(ij) − θj(ji)
)

−gijvi(ij)vj(ji) sin
(

θi(ij) − θj(ji)
)

, (i, j) ∈ L (8h)

pji = gcjiv
2
j(ji)
− gjivj(ji)vi(ij) cos

(

θj(ji) − θi(ij)
)

+bjivj(ji)vi(ij) sin
(

θj(ji) − θi(ij)
)

, (i, j) ∈ L (8i)

qji = bcjiv
2
j(ji)
− bjivj(ji)vi(ij) cos

(

θj(ji) − θi(ij)
)

−gjivj(ji)vi(ij) sin
(

θj(ji) − θi(ij)
)

, (i, j) ∈ L (8j)
where

x :=
[

(pgi , q
g
i )(g,i)∈G ,

(

pij , qij , vi(ij) , θi(ij)
)

(i,j)∈L∪Lt

]

,

and

z :=

[

(

pgi(i) , q
g
i(i)

)

(g,i)∈G
,
(

pij(i) , qij(i) , vi, θi
)

(i,j)∈L∪Lt

]

.

Now, by relaxing the consensus constraints (2)–(7), the (par-
tial) Lagrangian function of problem (8) is given by

L (x, z,λ) :=
∑

(g,i)∈G

(fg
i (pgi )) + 〈λ,x− z〉 , (9)

where
λ :=

[

(

λg
p,i, λ

g
q,i

)

(g,i)∈G
,
(

λpij
, λqij , λvij

, λθij

)

(i,j)∈L∪Lt

]

,

is the vector of Lagrange multipliers associated with consensus
constraints (2)–(7). Accordingly, the Lagrange dual function
is

D (λ) :=minimize
x,z

L (x, z,λ) ,

subject to (1b), (1c), (1l), (8c)–(8j). (10)
The dual can now be decomposed in terms of components as
follows
D (λ) :=

∑

(g,i)∈G

Dg
i (λ

g
i ) +

∑

i∈B

Db
i

(

(λg
i )g∈Gi

, (λij)j∈Bi

)

+
∑

(i,j)∈L

Dl
ij (λij ,λji) , (11)

whereλ
g
i :=

[

λg
p,i, λ

g
q,i

]

, λij :=
[

λpij
, λqij , λvij

, λθij

]

and
λji :=

[

λpji
, λqji , λvji

, λθji

]

. Finally, the Lagrange dual
problem is given by

max
λ

D (λ) . (12)

The main reasons for solving the Lagrange dual function
(10) instead of the primal (8) is that, first, the former is
the pointwise infimum of a family of affine functions inλ
and is therefore concave, even though the primal problem (8)
is nonconvex. Subsequently, first-order methods from convex
optimization can be applied to solve the dual. Second, the
dual is separable in terms of components and can therefore
be solved in a distributed fashion, thus preserving privacy.
However, in this case, since the objective functions in (11)
are neither finite nor strictly convex (and also the Lagrange
function in (9) is unbounded below inx and z), the dual
function in (9) is unbounded.



IV. M ODIFIED DUAL FUNCTION AND ADMM

To make the Lagrangian function finite and strictly convex,
it is modified as follows

Lρ (x, z,λ) :=L (x, z,λ) +
ρ

2
‖x− z‖

2
, (13)

which is also known as the augmented Lagrange function, and
the augmented Lagrange dual function would be

Dρ (λ) :=minimize
x,z

Lρ (x, z,λ) (14a)

subject to (1b), (1c), (1l), (8c)–(8j). (14b)
To preserve the separability of the problem, ADMM is used
to approximate (14). More specifically, generators now solve

Dg
ρ,i

(

λ
g,k
i

)

= minimize
x

g

i

∑

g∈Gi

(

fg
i (pgi ) +

〈

λ
g,k
i ,xg

i

〉

+
ρpq
2

(

(

pgi − pg,ki(i)

)2

+
(

qgi − qg,ki(i)

)2
))

(15a)

subject to (1b), (1c), (15b)
wherexg

i := [pgi , q
g
i ], and transmission lines solve

Dl
ρ,ij

(

λk
ij ,λ

k
ji

)

= minimize
x

l
ij

{

〈[

λk
ij ,λ

k
ji

]

,xl
ij

〉

+

∑

(l,m)∈{(i,j)∪(j,i)}

(

ρvθ
2

(

(

vkl − vl(lm)

)2
+
(

θkl − θl(lm)

)2
)

+
ρpq
2

(

(

plm − pklm(l)

)2

+
(

qlm − qklm(l)

)2
))}

(16a)

subject to vi ≤ vi(ij) ≤ vi, vj ≤ vj(ji) ≤ vj , (16b)

θ∆ij ≤ θi(ij) − θj(ji) ≤ θ
∆

ij , (16c)

pij = gcijv
2
i(ij)
− gijvi(ij)vj(ji) cos

(

θi(ij) − θj(ji)
)

+ bijvi(ij)vj(ji) sin
(

θi(ij) − θj(ji)
)

, (16d)

qij = bcijv
2
i(ij)
− bijvi(ij)vj(ji) cos

(

θi(ij) − θj(ji)
)

− gijvi(ij)vj(ji) sin
(

θi(ij) − θj(ji)
)

, (16e)

pji = gcjiv
2
j(ji)
− gjivj(ji)vi(ij) cos

(

θj(ji) − θi(ij)
)

+ bjivj(ji)vi(ij) sin
(

θj(ji) − θi(ij)
)

, (16f)

qji = bcjiv
2
j(ji)
− bjivj(ji)vi(ij) cos

(

θj(ji) − θi(ij)
)

− gjivj(ji)vi(ij) sin
(

θj(ji) − θi(ij)
)

, (16g)
√

p2ij + q2ij ≤ sij ,
√

p2ji + q2ji ≤ sij , (16h)

where xl
ij :=

[

pij , qij , vi(ij) , θi(ij) , pji, qji, vj(ji) , θj(ji)
]

. On
the other hand, buses solve

Db
ρ,i

(

(

λ
g,k
i

)

g∈Gi

,
(

λk
ij

)

j∈Bi

)

=

minimize
z

b
i







∑

g∈Gi

(

−
〈

λ
g,k
i ,

[

pgi(i) , q
g
i(i)

]〉

+

ρpq
2

(

(

pg,k+1
i − pgi(i)

)2

+
(

qg,k+1
i − qgi(i)

)2
))

+

∑

j∈Bi

(

−
〈

λk
ij ,
[

pij(i) , qij(i) , vi, θi
]

〉

+

ρpq
2

(

(

pk+1
ij − pij(i)

)2
+
(

qk+1
ij − qij(i)

)2
)

+

ρvθ
2

(

(

vi − vk+1
i(ij)

)2

+
(

θi − θk+1
i(ij)

)2
))







, (17a)

subject to (8e), (8f). (17b)
where

zb
i :=

[

(

pgi(i) , q
g
i(i)

)

(g,i)∈G
, vi, θi,

(

pij(i) , qij(i)
)

j∈Bi

]

.

The effect of adding the ADMM penalty term (withρ > 0)
is twofold. First, it makes the local cost functions finite
and strictly convex and therefore the modified dual function
bounded. Second, it makes the modified dual function smooth
for large values ofρ. For small values ofρ, the concave mod-
ified dual functionDρ (λ) is typically nondifferentiable. In-
deed, usingDanskin’s theorem [30]–[32], the subdifferentials
of Dρ (λ) are∂Dρ (λ) := {x− z : Dρ (λ) ,x ∈ X , z ∈ Z},
whereX is the feasible set defined by constraints (1b), (1c),
(1l), (8c), (8d) and (8g) to (8j) andZ is the feasible set
defined by constraints (8e), (8f). More specifically, as the
(nonconvex) transmission line subproblems in (16) can have
multiple (globally) optimal solutions for a given vectorλ,
the subdifferentials∂Dρ (λ) may be not be unique and the
modified dual functionDρ (λ) can be nonsmooth. In more
detail,

gρ := [x− z] ∈ ∂Dρ (λ) ,
which is a subgradient ofDρ (λ), may not be unique whenρ is
small. On the other hand, for large values ofρ, gρ is unique
and is therefore a gradient ofDρ (λ), i.e. gρ = ∇Dρ (λ).
Finally, at each iterationk, each busi ∈ B updates its (local)
Lagrange multipliers using the subgradient projection method
as follows,

λk+1 = λk + ρgk
ρ, (18)

whereρ :=
[

(ρpq)2×|G| , (ρpq, ρpq, ρvθ, ρvθ)|L∪Lt|

]

.
The component-based ADMM algorithm is described in

Algorithm 1.

Algorithm 1: Distributed algorithm

1: Initialization: λ1 = 0, ρ >> 0, ǫ ≤ 10−4 and, for all

i ∈ B, zb,1
i =

[

pg

i
+p

g

i

2 ,
qg
i
+q

g

i

2 , 0, 0, 1, 0

]

.

2: while
∥

∥gk
ρ

∥

∥ ≥ ǫ do
3: Generators and lines solve (15) and (16) respectively

in parallel, and sendxg,k+1
i andx

l,k+1
ij to adjacent

buses.
4: Buses solve (17) in parallel and update their (local)

Lagrange multipliers as in (18).
5: Buses sendzb,k+1

i , λ
g
i , λij and λji to adjacent

generators and lines .
6: k ← k + 1.
7: end while

Definition 1: Let P †
IPM be a feasible primal solution

computed centrally by an IPM solver and letDρ

(

λ†
)

be a
solution of the approximate modified dual function computed
in a distributed fashion by Algorithm 1, initialized with the
same algorithmic starting point used to findP †

IPM. Then the gap



between the feasible primal solutionP †
IPM and its associated

approximate modified dual function optimal valueDρ

(

λ†
)

is
given by

AMDgap :=





P †
IPM −Dρ

(

λ†
)

P †
IPM



× 100.

Note that in Definition 1, ifP †
IPM is globally optimal, then

DAMD (λ
†) is an accurate approximation of the modified dual

function.
Definition 2: Let P †

ADMM = f
(

pg,†i

)

be a feasible primal
solution computed in a distributed fashion by Algorithm 1,
initialized with the same algorithmic starting point used to
find P †

IPM. Then the gap between the feasible primal solution
P †

IPM andP †
ADMM is given by

ROgap:=

(

P †
IPM − P †

ADMM

P †
IPM

)

× 100.

V. NUMERICAL EVALUATION

Algorithm 1 is implemented in MATLAB and the inter-
facing between AMPL and MATLAB is made possible by
AMPL’s application programming interface. The simulations
are all carried out on a computing platform with 10 Intel Xeon
E5-2687W v3 CPUs at 3.10GHz, 64-bit operating system,
and 128GB RAM. In all simulations, AMPL [33] is used as
a frontend modeling language for the optimization problems
along with KNITRO 10.2 [34] as a backend solver for the
nonconvex original OPF problem in (1) and the nonconvex line
and bus subproblems in (16) and (17) respectively. Generators
have closed form solutions as in [15].

The centralized IPM solutions, shown underP †
IPM

in Tables II and III, are initialized with x
g,0
i =

[

0.5
(

pg
i
+ pgi

)

, 0.5
(

qg
i
+ qgi

)]

for all (g, i) ∈ G, x
l,0
ij =

[0, 0, 1, 0, 0, 0, 1, 0] for all (i, j) ∈ L, and z
b,0
i =

[

0.5
(

pg
i
+ pgi

)

, 0.5
(

qg
i
+ qgi

)

, 0, 0, 1, 0
]

for all i ∈ B. This
initialization is the same one used as a starting point for the
IPM solver at each iterationk in Algorithm 1. The parameter
settings of Algorithm 1 are summarized in Table I and the
results are shown in Tables II and III for MATPOWER
[2], [27] and NESTA v6 [28] instances respectively. The
NESTA test cases are designed specifically to incorporate key
network parameters such as line thermal limits and small angle
differences, which are critical in optimization applications.

Tables II and III show that forǫ = 10−4, after careful
individualized tuning of parameters, Algorithm 1 converges
to feasible solutions with negligible AMDgap and ROgap on
all the 72 test cases.3

There are three key contributors behind the convergence of
Algorithm 1 on all the72 cases. First, parametersρpq andρvθ
are set to high values, typically in the ranges[100, 20000] and
[100, 500000], respectively. Second, most test cases require
settingρvθ to at least 3 orders of magnitude larger thanρpq.

3Note that the stopping criterion in Algorithm 1 requires a central authority
to compute the norm of the subgradient; nonetheless, if a central authority is
unavailable, the stopping criterion can be defined as in [12]or [14].

TABLE I
SUMMARIZED PARAMETER SETTINGS OFALGORITHM 1.

Setting ρpq ρvθ ǫ

A 300 300000 1.E-04

B 400 40000 1.E-04

C 400 400 1.E-04

D 400 4000 1.E-04

E 100 10000 1.E-04

F 1000 1000 1.E-04

G 100 100 1.E-04

H 100 100000 1.E-04

I 500 500000 1.E-04

J 400 400000 1.E-04

K 400 800 1.E-04

L 10000 100000 1.E-04

M 1000 10000 1.E-04

N 20000 200000 1.E-06

O 1000 100000 1.E-04

P 2000 20000 1.E-04

Q 10000 100000 1.E-06

TABLE II
CONVERGENCE OFALGORITHM 1 ON MATPOWER INSTANCES.

Objective ($) Gap (%)

Case P
†
IPM P

†
ADMM Dρ

(

λ
†
)

AMD RO I set

5 17551.89 17551.66 17551.89 -1.59E-05 1.30E-03 1229 A

6ww 3143.97 3143.93 3143.98 -8.79E-05 1.47E-03 972 A

9 5296.69 5296.90 5296.71 -4.39E-04 -4.02E-03 454 B

14 8081.52 8081.43 8081.53 -1.80E-05 1.14E-03 627 C

24 63352.20 63352.20 63352.20 -1.25E-06 8.52E-06 1290 C

30 576.89 576.93 576.92 -4.37E-03 -7.05E-03 1838 B

30 8906.14 8906.44 8906.14 -5.92E-07 -3.37E-03 894 C

39 41864.18 41864.17 41864.19 -3.03E-05 1.96E-05 3478 D

57 41737.79 41734.71 41737.79 -4.29E-07 7.37E-03 856 D

89 5819.81 5820.04 5819.99 -3.08E-03 -3.95E-03 8929 E

118 129660.69 129660.97 129660.71 -1.55E-05 -2.09E-04 635 D

300 719725.10 719727.91 719725.10 -5.75E-07 -3.90E-04 6202 D

Third, this disproportion in settingρpq and ρvθ is reflected
exactly in setting the values of the step size in the multiplier
update (18). More specifically, the step sizes for updating the
voltage and angle multipliers are also 3 orders of magnitude
larger than the step sizes for the active and reactive power
multipliers. To see the significance of this, all the test instances
with this specific parameter tuning would otherwise either
diverge or require more than106 iterations to converge. Some
notoriously difficult cases are MATPOWER’s case 5, NESTA’s
cases 30fsr API and 189API for which very few other
parameter settings, besides the corresponding ones in Table II,
seem to make Algorithm 1 converge. Furthermore, even after
exhaustive parameter tuning, the convergence on some test in-
stances (like NESTA’s 300 bus systems) is substantially slower
than others. Nonetheless, this still suggests that Algorithm 1
converges even on thesedifficult test instances.

It is evident from Tables II and III that there is no principled
way of setting the parameters of Algorithm 1. However,



TABLE III
CONVERGENCE OFALGORITHM 1 ON NESTA V5 INSTANCES.

Objective ($) Gap (%)

Case P
†
IPM P

†
ADMM Dρ

(

λ
†
)

AMD RO I set

Normal Operating Conditions

3 5812.64 5811.90 5812.64 -1.18E-06 1.28E-02 901 C

4 156.43 156.54 156.43 -9.84E-04 -6.93E-02 823 F

5 17551.89 17551.66 17551.89 -2.03E-05 1.31E-03 1302 A

6 c 23.21 23.21 23.21 -1.12E-03 -4.60E-04 620 G

6 ww 3143.97 3143.76 3143.97 3.50E-06 6.72E-03 1870 H

9 5296.69 5296.90 5296.71 -4.39E-04 -4.02E-03 454 B

14 244.05 244.06 244.12 -2.58E-02 -4.10E-03 8195 H

24 63352.20 63352.20 63352.20 -1.22E-06 7.89E-06 1290 C

29 29895.49 29895.64 29895.93 -1.46E-03 -4.89E-04 7394 H

30 as 803.13 803.10 803.13 -7.54E-04 3.79E-03 6982 H

30 fsr 575.77 575.80 575.80 -6.16E-03 -5.62E-03 3599 H

30 204.97 204.98 204.97 -2.38E-03 -4.96E-03 18061 H

39 96505.52 96506.35 96505.52 -5.09E-07 -8.61E-04 709 H

57 1143.27 1143.31 1143.27 -1.76E-04 -3.50E-03 27085 H

73 189764.08 189758.34 189764.08 -1.58E-06 3.03E-03 4264 H

89 5819.81 5820.01 5819.99 -3.09E-03 -3.44E-03 8932 E

118 3718.64 3718.60 3718.71 -1.91E-03 8.49E-04 3547 E

162 4230.23 4230.38 4230.23 -8.34E-06 -3.57E-03 23978 H

189 849.29 849.26 849.29 1.07E-05 3.74E-03 2444 G

300 16891.28 16885.83 16893.58 -1.36E-02 3.23E-02 289611 I

Congested Operating Conditions (API)

3 367.74 367.61 367.74 8.53E-04 3.42E-02 2475 D

4 767.27 767.25 767.27 6.20E-04 3.77E-03 133 D

5 2998.54 2998.74 2998.61 -2.45E-03 -6.83E-03 3282 D

6 c 814.40 814.29 814.40 1.05E-03 1.35E-02 299 D

6 ww 273.76 273.73 273.77 -1.93E-03 1.12E-02 1070 J

9 656.60 656.63 656.60 -2.45E-04 -5.08E-03 3923 D

14 325.56 325.77 325.56 -2.40E-04 -6.45E-02 4166 K

24 6421.37 6422.37 6422.87 -2.33E-02 -1.56E-02 1308 B

29 295782.68 295778.85 295784.89 -7.47E-04 1.29E-03 10799 J

30 as 571.13 570.30 571.11 3.80E-03 1.45E-01 22147 D

30 fsr 372.14 372.04 372.20 -1.59E-02 2.52E-02 95048 Q

30 415.53 415.84 415.51 3.78E-03 -7.65E-02 9222 D

39 7466.25 7466.48 7466.20 7.18E-04 -3.02E-03 20692 D

57 1430.65 1430.78 1430.66 -1.08E-04 -8.83E-03 2607 K

73 20123.98 20119.88 20124.75 -3.83E-03 2.03E-02 34083 J

89 4288.02 4286.91 4289.44 -3.31E-02 2.61E-02 31924 J

118 10325.27 10327.60 10326.17 -8.71E-03 -2.25E-02 10247 J

162 6111.68 6111.94 6111.69 -2.30E-04 -4.21E-03 9034 M

189 1982.82 1983.42 1983.66 -4.20E-02 -3.03E-02 162007 N

300 22866.01 22864.20 22866.05 -1.63E-04 7.94E-03 83484 O

Small Angle Difference Conditions (SAD)

3 5992.72 5991.61 5992.72 -3.06E-08 1.85E-02 2573 H

4 324.02 324.01 324.02 -7.64E-05 2.71E-03 711 H

5 26423.32 26422.31 26423.33 -4.55E-05 3.83E-03 2472 H

6 c 24.43 24.43 24.44 -3.13E-02 -1.44E-02 6704 H

6 ww 3149.51 3149.11 3149.51 2.19E-05 1.25E-02 6779 H

9 5590.09 5589.08 5590.09 4.93E-06 1.82E-02 6430 H

14 244.15 244.23 244.27 -5.05E-02 -3.48E-02 16453 H

24 79804.96 79805.84 79804.99 -3.51E-05 -1.10E-03 106967 Q

29 46933.26 46915.71 46933.88 -1.31E-03 3.74E-02 20144 H

30 as 914.44 913.83 914.44 1.61E-04 6.72E-02 46319 H

30 fsr 577.73 577.46 577.73 -2.87E-04 4.63E-02 4876 H

30 205.11 205.15 205.12 -1.49E-03 -1.93E-02 20242 H

39 97219.04 97218.00 97219.04 -2.46E-06 1.07E-03 5249 H

57 1143.88 1144.07 1143.88 3.54E-04 -1.60E-02 39382 H

73 235241.70 235249.73 235241.74 -1.98E-05 -3.42E-03 5799 L

89 5827.01 5827.05 5827.02 -2.19E-04 -6.09E-04 33386 H

118 4324.17 4323.01 4324.19 -5.20E-04 2.68E-02 22618 H

162 4369.19 4369.73 4369.78 -1.35E-02 -1.23E-02 18401 L

189 914.61 914.61 914.61 -2.27E-04 -1.26E-04 10850 M

300 16910.23 16904.58 16910.29 -3.91E-04 3.34E-02 52670 P

extensive simulations show that they can be clustered in
a summarizing table of plausible parameter settings. Some
parameter settings, like H for example, seem to work on the
most number of test cases. This stands in contrast to settings
Q and P which are tailored specifically to their respective test
cases in Table III.

VI. CONCLUSION

The method is numerically demonstrated to converge to fea-
sible near-optimal (if not optimal) solutions to the nonconvex
AC OPF problem, corroborated by tight convex relaxations,
on all the 72 considered test cases. Despite the absence of
a principled way to set up the parameters of the algorithm,
this work demonstrates that the ADMM penalty parameters
should be set to at least100, in order to ensure differentiability
of the modified dual function. This not only affects the
speed of convergence, but can mean the difference between
convergence and divergence. More interestingly, in most cases,
convergence can only be witnessed if the penalty parameters
for the voltages and angles are set to at least one order of
magnitude higher than those of the active and reactive power.
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