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Abstractð In this paper a hierarchical, four-level 

optimization framework for integration assessment of plug-in 

Electric Vehicles (EVs) in electricity markets is presented. The 

developed framework incorporates coupled optimization routines 

to model the optimal energy and regulation market participation 

strategy and the optimal real-time charging management of an 

EV fleet in a combined approach, which expands from day-ahead 

horizon to second-by-second time resolution. The developed tool 

allows for an in-depth assessment of electricity market designs in 

integrating EV fleets through intermediary players, the EV 

Aggregators. The performance of state-of-the-art market 

products, such as the performance-based regulation market 

compensation ruled by FERC, can also be quantified. A detailed 

case study of 1000 EVs is examined, where the PJM market is 

modeled as the reference design. Emphasis is given on the full 

modeling of performance-based regulation market and the 

reference regulation market design is compared with two other 

cases, one that allows asymmetric regulation capacity offering 

and one where EVs respond to the traditional, rather than the 

dynamic regulation control signal. Finally, the case of perfect 

estimation of EV fleet behavior is compared with the case that 

the EV fleet behaves differently from what was initially 

forecasted. The results presented unveil the value of the proposed 

framework.  

Keywords—electric vehicles, electricity markets, regulation 

market, electric vehicle aggregator, optimization, stochastic 

programming 

I. NOMENCLATURE 

Indices 

i  ( I ) index (set) of electric vehicles   

t  (T ) index (set) of hourly time intervals   

k  (K ) index (set) of regulation control signal intervals, 

i.e. 4 seconds 

w (Ǹ) index (set) of scenarios   

t index of current operating hour 

 

Parameters 

wp  scenario w probability of occurrence  

,DA E
tl  day-ahead forecasted energy price, [$/MWh] 

(/ )Rup dn
tl  forecasted regulation up(/down) price, [$/MW-h] 

,
,
RT E
t wl  real-time energy price during hour t (average of 

sub-hourly real-time prices within hour t), 

[$/MWh] 
, (/ )

,w
dc up dn
tR  up (/down) dispatch-to-contract ratio, [p.u.]  

chrg
iP  the rated charging power of each EV charging 

station, [kW] 

iPL  parameter which equals 1 as long as an EV is 

plugged in, 0 otherwise. 

Variables 

DA
te  day-ahead demand bid, [MWh] 

,w
RT
te  real-time energy consumption, [MWh] 

(/ )
,
RTup dn

tr w  up (/down) regulation offer, [MW-h] 

,tdew deviation between real-time energy consumption 

and day-ahead demand bid, [MWh] 

,
I
tdew instructed deviation between real-time energy 

consumption and day-ahead demand bid, [MWh] 

,
U
tdew uninstructed deviation between real-time energy 

consumption and day-ahead demand bid, [MWh] 

,tpop w preferred operating point of the EV fleet during 

real-time operation, [MWh] 
5min
ipop  preferred operating point of the i th EV during a 

5min interval, [kW] 
4s
isp  charging set-point of the i th EV during a 4sec 

interval, [kW]. 

II. INTRODUCTION  

The expected penetration of plug-in Electric Vehicles 
(EVs) in the near future [1] creates prospects for a cleaner, 
more sustainable, and more decarbonized future. However, a 
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large EV penetration rate should be carefully addressed, since 
irregular EV charging could have detrimental effects on power 
systems and electricity market operation as well as on power 
quality at the distribution level. In this context, there is a vivid 
interest in developing tools that would meet these challenges 
effectively and an ongoing debate on optimal design of 
electricity markets that could effectively integrate these 
emerging technologies [2], [3]. 

Most research works that deal with the integration of EVs 
in electricity market operations adopt the idea of an 
intermediary party, the plug-in Electric Vehicle Aggregator 
(EVA) [4] as a market player that participates in the market 
arrangements on behalf of the EV fleet that the EVA 
represents. However, besides the market operations, EVAs can 
control the EV charging process during real-time operation, 
can coordinate the charging management of the EV fleet and 
simultaneously take advantage of the flexibility in the charging 
process by providing ancillary services to the System Operator 
(SO), for example provision of regulation service by 
responding to Regulation Control Signal (RCS) requests [5], 
[6]. Although previous studies highlighted the potential of EVs 
to provide various kinds of ancillary services [7], regulation 
service is considered the most valuable [8]. 

EVA optimal participation in the Day-Ahead Market 
(DAM) has been investigated in the past. Indicative works can 
be found in [9]-[12]. Works that focus on the real-time 
charging management problem and RCS allocation algorithms 
based on charging priority criteria can be found in [13]-[18]. 
Works related to the optimal EVA participation in DAM and 
Real Time Market (RTM) can be found in [19] and [20] but 
they do not consider RCS allocation to EVs. Linking between 
day-ahead market participation and real-time charging 
management can be found in [9] and [21] where algorithms for 
real-time charging control are presented, however no RCS 
allocation priority is incorporated, battery dynamics are 
ignored and in [9] RCS uncertainty management is not 
included. Finally, there are works in the bibliography that study 
the impact of EV integration in electricity markets and 
regulation service, such as [22] and [23]. However, in these 
works neither RCS allocation in real-time nor the impact of 
different RCS type selection (traditional or dynamic) on the 
charging process has been addressed.  

This work goes beyond the state-of-the-art and proposes for 
the first time a new hierarchical optimization framework 
suitable for impact assessment of short-term electricity market 
design on the performance of EV integration in electricity 
markets and power system operations. The developed platform 
incorporates both algorithms for optimal bidding strategy of 
EVAs in the DAM and subsequent RTM sessions during the 
Operating Day (OD) as well as algorithms for the real-time 
charging management of EVs during real-time and the 
allocation of the RCS to the EVs in a coordinated manner. 
Numerous qualitative and quantitative results can be derived 
from this platform, for example assessment of both the 
efficiency of a candidate market design in integrating EVs and 
the efficiency of EV integration in an existing market 
settlement. To the best of our knowledge, no such detailed 
approach has been proposed before.  

The main contributions of this paper are: 

¶ Development of a hierarchical, four-level, optimization 
framework that includes both market participation tools 
and real-time charging management in a combined 
approach.  Optimization problems for three of the four 
levels have been developed in previous works of the 
author ([10],[18]). A level 2 problem, which models the 
rolling, hour-ahead optimization strategy for RTM 
participation, is developed in this work and it is 
integrated into the framework. This level is crucial for 
accurate modeling of state-of-the-art market designs 
since it is the intermediary step that links DAM 
participation with real-time EV fleet charging 
management. 

¶ A qualitative assessment of the regulation market 
remuneration mechanism under performance-based 
regulation market design. To the best of our knowledge, 
it is the first time that such an in-depth evaluation has 
been carried out.  

¶ Comparison of three different regulation market 
designs. The reference regulation market design is 
compared with two other cases, one that allows 
asymmetric regulation capacity offering and one where 
EVs respond to the traditional, rather than the dynamic 
RCS. Finally, the case of perfect foresight of EV fleet 
behavior is compared with the case that the EV fleet 
behaves diversely from what was initially forecasted. 

¶ Preliminary presentation of two innovative tools that 
have been developed and incorporated into the 
framework, one for RCS scenario generation and one 
for dynamic update of the EV fleet status during real-
time operation. 

In section III the developed framework is described, and in 
section IV a detailed case study is set up. Conclusions are 
summarized in section V. 

III.  DESCRIPTION OF THE DEVELOPED OPTIMIZATION 

FRAMEWORK 

In this paper an EVA manages a fleet of I EVs and 
participates in the short-term DAM and RTM by submitting 
optimal demand bids and regulation capacity offers. 
Unidirectional interaction with the grid is adopted, i.e. the EVs 
are not capable of discharging energy back to the grid: they can 
only deviate from their scheduled operating point, by reducing 
or increasing their charging rate. Although bidirectional 
interaction seems to be more profitable additional hardware 
and protection are needed, and it leads to increased cycling 
wear of the battery. Although expansion of the framework for 
bidirectional interaction is easy, the paper focuses only on 
unidirectional interaction which is considered by the author as 
the most appropriate choice for the initial EV integration phase. 
The EVA also controls the charging process of each individual 
EV in the fleet: once an EV is plugged in the EVA algorithm is 
responsible for modulating the EV charging power. In 
exchange, the EVA offers attractive tariffs to EV owners by 
sharing part of the profits. The EV tariff structure is outside the 
scope of this paper. 



A. Considerations on market participation strategy 

The developed framework can practically be parameterized 
for any kind of electricity market design that includes day-
ahead, intra-day and real-time energy and/or ancillary service 
markets. In this paper the PJM market1, considered by the 
authors as one of the most advanced pool-based markets 
worldwide, is modeled as the reference case for two reasons. 
Firstly, it is the only market that provides free access to 2-sec 
RCS data ([24]) which are highly valuable for the problem 
under consideration. Secondly, it is the first regional market 
under FERC surveillance that adopted the performance-based 
regulation compensation mechanism, which is an advanced 
market design that incentivizes the resources that are more 
efficient in providing regulation. The presentation of the basic 
aspects of the reference market design in this subsection will 
help the reader to follow the developed framework more easily. 

PJM operates a DAM, an RTM (balancing market), and 
markets for ancillary service provision. In this paper, there is a 
focus on DAM, RTM and regulation markets (i.e. automatic 
response service to SO Automatic Generation Control 
commands for Area Control Error correction), ([24],[25]). 

Focusing on DAM participation, submission period for 
DAM offers/bids closes at 12:00 day-ahead ([24]). Before that 
time, the market participants (units, load-serving entities) 
submit supply-offers / demand-bids for energy to the SO in the 
form of quantity-price pairs (multi-step functions). The SO 
clears the day-ahead energy and schedules reserve market by 
co-optimizing energy and reserves using least-cost security 
constrained resource commitment and dispatch. The SO 
computes the cleared quantities system-wide and per 
participant as well as the day-ahead energy Locational 
Marginal Prices. EVAs are assumed to execute their optimal 
DAM participation program (level 1) at 11:30 day-ahead [Fig. 
2(2A)]. 

It is noted that in both DAM and RTM, the EVA is 
considered as a self-scheduled, price-taking, market participant 
(rational assumption for small EV fleets) that submits quantity-
only demand bids at the market price cap and regulation 
capacity offers at zero offer price ([24],[25]). It is assumed that 
the submitted regulation offers are fully cleared, therefore the 
assigned regulation capacity equals the submitted offer. The 
same is true for the submitted demand bids. Platform expansion 
for bidding curves is possible but it is not modeled here. 

The resource owners that want to provide regulation in the 
PJM balancing area are required to submit no later than 18:00 
day-ahead  

a) The maximum MW amount - Offer MW - of regulation 
capacity that the resource is willing to provide for the next OD.  

b) a price - Offer Price - that should reflect the capability of 
the resource in $/MW and the performance of the resource in 
$/ΔMW. Since the EVA is a self-scheduled participant, the 
Offer Price is zero. 

However, the above submissions are not binding. Until 
60min prior to the beginning of the Operating Hour (OH), 

                                                           
1 PJM Regional Transmission Organization, USA. http://www.pjm.com/ 

when the regulation market actually closes, participants may 
submit revised regulation capacity offers (which are binding) 
with the following restrictions:  

a) Offer Price may not be changed; it is fixed to the one 
submitted before 18:00 day-ahead (in case of EVA it remains 
zero) 

b) Offer MW may be revised to reflect the most recent 
operating conditions; however, revised offer quantity may not 
be higher than the one submitted before 18:00 day-ahead. No 
penalties are imposed for revising the regulation capacity offers 
([26]). 

According to PJM rules, the resources must offer a 
regulation capacity band, i.e. the upward capacity equals the 
downward capacity [25]. The minimum accepted quantity is 
0.1 MW. 

After collecting regulation offers, the SO adjusts them 
based on historical performance indices, ranks them in 
ascending order and calculates the regulation price 
components, the Regulation Market Capability Clearing Price 
(RMCCP), the Regulation Market Performance Clearing Price 
(RMPCP) and finally the Regulation Market Clearing Price 
(RMCP) and posts the results no later than 30 minutes prior to 
the start of the OH [25].  

The opportunity for revised regulation offers 1-hour before 
the OH, is actually the strongest motivation for the 
development of a level 2 optimization program which is 
assumed to be executed hourly, 75min before the OH [Fig. 
2(2B)], in a rolling manner (in line with PJM rules), by taking 
into consideration the latest EV fleet status and market 
conditions. 
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Fig. 1. a) T. RCS and D. RCS (p.u.) for April 22, 2014 [24] and b) the 
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coefficient in 15min intervals. 



When a resource participates in a PJM regulation market, it 
can follow one of two candidate RCS; the traditional RCS (T. 
RCS) and the dynamic RCS (D. RCS). Actually, T. RCS is the 
low filter Area Control Error signal which is sent to the 
traditional regulating resources and D. RCS is the high filter 
Area Control Error signal sent to the dynamic regulating 
resources. D. RCS is designed for resources with high MW 
ramp rates and rapid turnaround, such as batteries and 
flywheels. The resulting D. RCS signal pushes movement to 
the outer edges of the resource maximum capacity, however, it 
has a slight energy bias due to the duration limitations of these 
resource types. T. RCS was designed for resources with limited 
ramp rate, but with no limitation on duration. T. RCS and D. 
RCS are complementary, that is, dynamic resources respond 
quickly but lack the ability to remain at that level for an 
extended period of time while traditional resources require time 
to follow the signal but have unlimited duration ([25]). Fig. 1  
depicts T. RCS and D. RCS for a day. The difference in the 
energy bias of the signals and the requested resources 
movement (mileage) is obvious. PJM broadcasts RCS every 2 
sec. In this paper it is assumed that the RCS is positive if the 
SO commands the provision of upward regulation 
(consumption reduction in case of EVA) or negative if the SO 
commands the provision of downward regulation (consumption 
increase in case of EVA). 

An easy way to calculate the energy bias of an RCS 
provided to a resource is to calculate the dispatch-to-contract 

ratio, 
dcR , defined as the ratio of the real-time activated 

energy to the contracted regulation capacity of this resource, 
during a defined time interval.  Given that an RCS is broadcast 

by the SO every 4sec, 
,dc up

R  which expresses the energy bias 

towards the upward direction is calculated in (1). ,dc dnR , 

which expresses the energy bias towards the downward 
direction, is calculated from the same equation but for RCS 
values < 0. In PJM the percentage of the RCS allocated to one 
resource is proportional to the percentage of assigned 
regulation capacity of the specific resource, relative to the total 
SO assigned regulation capacity ([27]). Therefore, the RCS 
instructed to the EVA equals the SO per unit (p.u.) RCS [Fig. 
1(a)] multiplied by the EVA assigned regulation capacity. The 

corresponding 
dcR  coefficients for the RCS presented in Fig. 

1(a) are presented in Fig. 1(b). It is obvious that 
dcR  

coefficients for T. RCS are much more energy biased than D. 
RCS and follow one direction for longer time. 

( . .) 015min,
( . .)

225

>
=
ä p u RCSdc up

RCS
R p u   (1) 

After regulation market clearing and after regulation 
provision during an OH the resources are compensated for their 
participation for that OH as follows. 

Regulation Clearing Price Credit =  

Regulation RMCCP Credit + Regulation RMPCP Credit =  

Assigned Regulation (MW) ‧ Actual Performance Score ‧ 
(RMCCP + Mileage Ratio ‧ RMPCP)  (2) 

In (2) Mileage Ratio is the ratio between the requested 
mileage for the RCS assigned to the regulation resource and the 
RCS assigned to the traditional resource. 

That is : 

For a traditional regulation resource, mileage ratio = 

.
1

.
=

Mileage T RCS

Mileage T RCS
 (by definition) 

For a dynamic regulation resource, mileage ratio =  

.
1

.
¸

Mileage D RCS

Mileage T RCS
 

Mileage Ratio is unitless and it is used only in Settlement 
for Regulation Performance credit to resource. In this paper, 
the mileage ratio for dynamic resources equals 2.93, which is 
the PJM mean value for June 2014 [24].  As stated before, the 
difference in mileage between D. RCS and T. RCS is obvious 
in Fig. 1 (a). 

In addition, the actual regulation credits are dependent on 
the performance of the resource in providing regulation. In 
detail, the credits are proportional to the actual hourly 
performance score (2) that the resource will achieve, which 
varies between 1 for perfect performance and zero (0) for no 
performance. The performance score consists of three factors, 
correlation, delay and precision score (3), weighted equally. 
Based on the very fast response capability of the lithium-ion 
batteries of EVs, correlation and delay scores can be assumed 
to be equal to 1 and the only factor that needs to be calculated 
is the hourly precision score, which is calculated at 10 sec 
samples from the absolute response error as a function of the 
resource’s assigned regulation capacity in (3) and (4) where n 
is the number of samples (i.e. 360) in hour t. 

Actual Performance Scoret = Precision scoret   

 
1

1
Í

= -ä k
k t

error
n

  (3) 

Errork   
( )

-
= k k

t

Response RCS

Assignment MW
   (4) 

B. EVA optimization problems 

The hierarchical, four-level optimization structure of the 
developed simulation platform is described below. Interactions 
between the involved parties and the optimization problems of 
the EVA are presented in Fig. 2. An overview of the binding 
and advisory schedules that are produced by the four 
optimization problems are presented in Table 1 and analyzed in 
greater detail below. 
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(A) Level 1: Optimal DAM participation strategy

(B) Level 2: Optimal RTM participation strategy
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(D) Level 4: Optimal RCS allocation strategy
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(OH+2)-75min

OH+2

(2) EVA optimization problems

popt

 
Fig. 2.  (1) Interactions between the EVA, the Market Operator (MO), the SO, 
and the EVs. Level 1 (blue, dotted line), level 2 (purple, dashed line), level 3 

(red line) and level 4 (green, dashed line) interactions. In yellow the EV 

information that is exchanged once with the EVA (e.g. desired State-of-
Energy, EV battery size). Market operator and SO could be the same entity in 

some electricity markets. (2) Description of the EVA optimization problems. 

Time arrangements are parameterized for the PJM market. The colors are in 
line with the first diagram. Each dot declares the time that each problem is 

solved, and the solid part of line in levels 1 and 2 expresses the time interval 

for which binding decisions are produced. 

TABLE I. OVERVIEW OF BINDING AND ADVISORY DECISIONS PRODUCED BY 

THE OPTIMIZATION PROBLEM OF EACH LEVEL 

 
Execution 

time 
Binding schedules 

Scenario-dependent, 

advisory schedules 

Level 1 
OD-1, at 

11:30 

DA
te ,    [1, ]t TÍ  

,
RTup

tr w , ,
RTdn

tr w , ,tdew,     

[1, ],t T wÍ ÍǸ 

Level 2 

Once an 

hour, OH-

75mim 

RTuprt ,
RTdnrt , 

Udet  

RTup
tr ,

RTdn
tr , 

U
tde ,        

[ 1, ],t Tt wÍ + ÍǸ 

Level 3 Every 5min 5min
ipop   i"  - 

Level 4 Every 4sec 4s
isp        i"  - 

 

1) Level 1: Optimal DAM participation strategy 
The first optimization level includes the problem of optimal 

participation in the DAM session of the Operating Day (OD) 
[Fig. 2(2A)]. The DAM optimization strategy of this paper is 
based on the framework developed in [10], namely a two-stage 
stochastic linear program with recourse which produces 
optimal first-stage decisions and second-stage, scenario 
dependent schedules. First-stage decisions are self-scheduled, 

quantity-only demand bid submissions in the DAM, 
DA
te . 

Second-stage schedules are produced for the EV fleet preferred 

operating point during the OH, ,tpop w and the revised 

regulation capacity offers (Offer MW) ,
RTup

tr w  and ,
RTdn

tr w  for the 

OH. The second stage variables are not binding, they are just 
advisory schedules, given the real-time operation uncertainty 
which is expressed via appropriate scenarios for future 
realizations of the random variables of the problem. The final 

binding values popt, 
RTuprt  and 

RTdnrt  for each OH are 

produced by the rolling solution of the level 2 problem [Fig. 
2(2B)].  

It is worth pointing out the importance of the two-stage 
stochastic problem of this level, since it handles the 

interdependency between instructed deviation ,
I
tdew and 

uninstructed deviation ,
U
tdew in a systematic way. Deviation is 

referred to a difference between the DAM cleared quantity, 
DA
te  and the actual real-time consumption, 

RT
te . The former is 

deviation owing to System Operator commands for regulation 
activation during real-time operation and the latter is deviation 
owing to the EVA. Due to the limited energy nature of EV 
batteries as power system resources, regulation activation 
which instructs a PEV fleet to charge more or charge less than 

the scheduled preferred operating point, ,tpop w, could possibly 

lead to an uninstructed deviation in a future operating hour. 
This is a result of the fact that the total charging demand 
request for a PEV fleet is a-priori defined (by the actual 
charging needs), therefore any instructed deviation which 
affects the remaining charging demand might be self-cancelled 
by an uninstructed energy deviation in a subsequent time 
interval. Otherwise, early battery depletion or early battery 
saturation may be inevitable, making the PEV fleet unable to 
honor the assigned regulation. Finally, an important feature 
which is highlighted through the developed model is the fact 
that the EVA can take advantage of the uninstructed deviations 
and arbitrage between DAM and RTM under a two-settlement 
system [28],  

, ,
, ,( )w wl lÖ - - ÖDA DA E DA RT RT E

t t t t te e e $,  (5)  

 
where the term in parenthesis equals the total energy deviation 
between the day-ahead position and real-time actual energy 

delivery, ,tdew, (6) which is traded at the RT energy price, 

,
,
RT E
t wl . Instructed deviation, given 

dcR  coefficients presented 

earlier, is calculated in (7). Advisory ,tpop w is calculated in 

(8). The EVA’s objective function (9) is the minimization of 



the cost of energy purchased both in DAM and RTM 
(assuming a two-settlement system) minus the revenue from 
regulation market participation. Also, penalties for excessive 
uninstructed imbalances between DAM and RTM are imposed. 
Uninstructed deviations greater than 20% between DAM and 
RTM are penalized with the Balancing Operating Charge 
(BOR) [25]. Results of the level 1 problem solution are 
presented later in the case study. For the detailed problem 
formulation and a more in-depth analysis of the problem the 
reader is referred to [10]. 
 

, , , ,w w w w= - = +DA RT I U
t t t t tde e e de de  (6) 

, ,
, , , , ,w w w w w= Ö - ÖI dc up RTup dc dn RTdn

t t t t tde R r R r  (7) 

, ,w w= -DA U
t t tpop e de  (8) 

minimize 

,

, ,

, , ,
, , , ,( )

DA E DA
t t

t

Rup RTup Rdn RTdn
t t t t

t

RT E U Up U Dn
t t t t

t

e

r r

de pnlty pnlty

w w w
w

w w w w w
w

l

p l l

p l
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ê ú
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 (9) 

2) Level 2: Optimal RTM participation strategy 
Level 2 optimization includes the rolling process that generates 

optimal binding schedules for 
RTuprt , 

RTdnrt and 
Udet  during the 

OH (t). This problem takes into account the DAM clearing 

results 
DA
te  which are already known, and optimizes the RTM 

quantities using two-stage stochastic linear programming with 
recourse including the latest available information about the 
EV fleet status and market conditions. It is executed once an 
hour, 75min before the OH. In Fig. 3, an illustrative example of 
two consecutive executions is presented. The scheduled 
quantities are binding only for the second upcoming interval 
(purple line) and advisory for the receding time horizon (look-
ahead capability). This step is also presented in Fig. 2(2B). The 
objective function (10) results from modification of (9). The 
problem now expands from the current OH t to the end of the 

receding horizon. First stage decisions are 
RTuprt , 

RTdnrt  and 

Udet  and second stage decisions are the values of the same 

variables for the receding horizon. Non-anticipativity 
constraints have been added for hour t. Results for this level 

are presented later in the case study. For more information on 
the omitted constraints, the reader is referred to [10]. 

An example of the market settlement, the market 
participation philosophy of levels 1 and 2 and the 

interdependence between ,
I
tdew and ,

U
tdew is presented in Fig. 4 

for one hour. It is assumed that the EVA executes level 1 
problem and submits a demand bid of 9 MWh in the DAM 
which is cleared. Before 18:00 the EVA submits a regulation 
offer of 6 MW (both upward and downward) which is the 

maximum value of the (/ )
,
RTup dn

tr w  between all second-stage 

scenarios (produced also in level 1). 75 minutes before the OH 
the EVA solves the level 2 problem that produces popt(8) 

which is (let’s say) 5 MWh and the binding regulation offer for 

the OH, (let’s say) 
RTdn RTdnr rt t= =5 MW. In this 

example ,
U
tdew = 9-5=4 MWh (8). BOR charges are imposed on 

deviations greater than 20% of 
DA
te , i.e. outside [7.2 

MWh,10.8 MWh] zone, therefore a BOR charge is debited for 
(7.2-5=) 2.2 MWh. Given that the regulation offer is cleared, 
let us assume that during real-time the EVA is commanded to 
provide regulation which leads to an energy bias of 1.3 MWh. 

Therefore, ,
I
tdew =1.3 MWh. From (6) the final ,tdew =1.3+(-

4)=-2.7 MWh.   

minimize 
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Fig. 3.  Two consecutive solutions of the level2 problem 
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3) Level 3: Optimal preferred operating point allocation 

strategy 

The optimization problem of level 3 allocates popt(which has 

been determined 75min before the OH from level 2 (8)) to the 
EVs during the OH. popt allocation is not arbitrarily selected 

but it is based on priority criteria. The priority criteria are 
expressed by priority weightsiw  and the smaller the weight, 

the higher the charging priority of an EV. Two main 
parameters determine the priority weight for each EV: the 

energy required to complete the charging, 
rE , and the time 

remaining until disconnection time,
rT . For example, two EVs 

with the same charging energy request will not be given the 
same priority if the first disconnects after one hour and the 
second disconnects after five hours. The first EV is assigned 
higher charging priority. The optimization framework for 

5min
ipop  specification based on priority weights has been 

developed in [18]. The basic idea of the optimization problem 
is presented in (11)-(13). An evaluation of the impact of the 
combined priority weight parameterization is carried out in 
[18]. Due to the dynamically evolving nature of priority 
weights, the problem for popt re-allocation should be 

executed very often. A reasonable value for this control level is 
a 5min interval [Fig. 2(2C)]. In this case, the level 3 problem is 
solved 12 times during an OH.  
 

Minimize 5Öä
min

i i
i

w pop   (11) 

subject to 5
t=ä

min
i

i

pop pop  (12) 

( , )= r r
iw f E T  (13) 

4) Level 4: Optimal RCS allocation strategy 
The fourth level includes the optimal allocation of the RCS to 
the EVs. During real-time operation the EVA is requested to 
respond to RCS which is generally broadcast from the SO 
every few seconds (e.g., in PJM RTO every 2 s, in New York 
ISO every 6 s). Therefore, each time a new RCS is broadcast, 
the EVA solves the level 4 problem which adopts the same 
philosophy of the level 3 problem, i.e. when regulation down is 
requested, the EV with the higher charging priority charges 
first. This level is nested in level 3, since the final EV charging 

setpoint determination, 
4s
isp , depends on the earlier 

5min
ipop  

specification. A regulation up request implies 
5min
ipop  

reduction. On the contrary, a regulation down request implies 
5min
ipop  increase. The full problem description is presented in 

[18]. 

C. Scenario generation methodology for regulation control 

signal 

The RCS is highly uncertain and almost impossible to be 
forecasted. Therefore, an innovative methodology for RCS 
scenario generation has been developed and has been 
incorporated into the optimization framework that generates 

artificial 4-sec RCS time series which keep the statistical 
properties of the authentic RCS (i.e. autocorrelation). The tool 
is called every hour, before the solution of the level 2 problem. 
The tool is based on an iterative process that uses an Artificial 
Neural Network and has been implemented in Matlab®. After 

RCS scenario generation the 
, (/ )

,

dc up dn

tR w  coefficients are 

calculated (1) and are incorporated into the level 2 model. Due 
to space limitations, the mathematical background is omitted 
from this paper. However, for the whole idea the reader is 
referred to [29], where the same methodology has been 
proposed to create scenarios for other random variables (like 
electric load, photovoltaic and wind energy production). The 
ANN has been trained independently for scenario generation of 
D. RCS and T. RCS. In Fig. 5 an example of D. RCS scenario 
generation is presented. The full presentation of the 
methodology will be presented in future work. 
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Fig. 5.  Scenario generation for the D. RCS. At the 500th time interval the 
scenario generation begins. Two created RCS scenarios that expand two hours 
ahead are depicted in the figure. 

D. Tool for dynamic EV fleet status update 
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Fig. 6.  The basic features of the proposed tool for dynamic EV fleet status 
update 



When the EVA solves the level 1 problem, the optimal 
decisions are based on estimations/expectations about the EV 
fleet behavior, most possibly based on historical records. 
However, it is likely that during real-time operation the EVs 
will not behave as expected and changes in arrival time and 
State-of-Energy (SOE) at arrival time might be recorded. These 
changes should be taken into account when the rolling solution 
of the level 2 problem is carried out, since in different cases the 
decisions will be based on inaccurate information. A new tool 
has been developed and has been incorporated into the 
optimization framework that dynamically updates the EV fleet 
status with updated estimations as the optimization window 
moves forward in time or with the actual information when an 
EV plugs for charging. The basic idea of the tool is presented 
in Fig. 6.  

Let us assume that the arrival time of each EV is recorded. 
After many recordings, the EVA can fit a distribution to the 

arrival time, between min. and max. arrival time, 
lo

iT  and 
hi

iT . 

A uniform distribution is selected and the EVA calculates the 

mean value of the distribution, 
1exp

iT  [Fig. 6 (a)] which, when 

combined with the expected arrival SOE, 
exp
iSOE  together 

form the pair of the initially estimated EV behavior 

(
1exp

iT ,
exp
iSOE )2. As the level 2 problem is executed 

sequentially and as long as the OH, t is still earlier than
1exp

iT  

(
1exp

iTt ), the pair (
1exp

iT ,
exp
iSOE ) is still used as the 

estimated EV behavior [Fig. 6(a)]. In case the EV arrives 
earlier than expected, data are updated with the actual ones 

(
act

iT ,
act
iSOE ) [Fig. 6(b)]. If the EV arrives at the estimated 

time but with 
act
iSOE ≠

exp
iSOE  the actual 

act
iSOE  is taken into 

account in the level 2 problem, (
1exp

iT ,
act
iSOE ) [Fig. 6(c)]. 

When t exceeds 
1exp

iT  and the EV has not arrived yet, a new 

2exp
iT is calculated as the mean value between 

1exp
iT  and 

hi
iT  

[Fig. 6(d)]. This recalculation is executed dynamically each 

time tequals 
( )exp n

iT and the EV has not arrived yet [Fig. 6(e)]. 

In case that 
( )exp n

iT  reaches 
hi

iT  and the EV has not arrived 

yet, then the algorithm assumes that the EV will not arrive at 
all and ignores it from the following executions of the level 2 
problem [Fig. 6(f)]. Finally, there is always the chance that the 
EV will arrive much later. In that case, whenever it arrives the 

EV status is updated with (
act

iT ,
act
iSOE ) [Fig. 6(g)].  

IV.  CASE STUDY 

The developed optimization framework is examined in a 
residential, night charging case study where the EVA 
participates both in DAM and RTM sessions, while modulating 
the charging of 1000 PHEVs during real-time operation. 

                                                           
2 Departure time 

dep
iT  and desired SOE at 

dep
iT  are considered known and 

unchangeable in this paper, thus the tool focuses only on uncertainty in arrival 
time and SOE at arrival time.  

All simulations were carried out in an Intel® Xeon ® 
workstation, with CPU E5-2687W v2 at 3.4 GHz. The system 
has 128 MB of installed RAM memory. The optimization 
problems were modeled in GAMS® 24.4.6 environment and 
CPLEX 12.6.2 solver was used. 

A reference EV fleet has been created and its characteristics 
are produced by random number generators that follow the 
probability distributions of TABLE II . Two EV fleet scenarios, 
Fleet A and B, are then created and evaluated. Fleet A equals 
the reference fleet, assuming perfect EV fleet behavior 
estimation during real-time. Fleet B however behaves 
differently from what was initially forecasted (reference fleet). 
It is assumed that during real-time operation 25% of the fleet 
(250 EVs) plugs in for charging 1 to 3 hours later than the 
expected arrival time with an initial SOE deviation ranging 
between [-15%, +15%] from the expected, following a uniform 
distribution. Another 25% of the fleet will never plug in and 
the rest 50% will behave exactly as it was expected. The 
management of the EV fleet behavior during the real-time 
operation is carried out by the tool developed in subsection D. 
In Fig. 7, the EV number that plug in per hour is presented for 
the two EV fleet scenarios, together with the aggregated 
charging energy requested by the EVs that plug in per hour. 
The rated charging power is 3kW and the desired final SOE is 
set at 97% for all the EVs.  

TABLE II . PROBABILITY DISTRIBUTIONS FOR THE EV FLEET PARAMETERS 

 Distribution 
Mean 

value 

Standard 

deviation 

Min. 

value 

Max. 

value 

Battery 

capacity (kWh) 
UD* 18 6.93 6 30 

Arrival Time TGD* 19:00 2 h 16:00 1:00 

Departure 

Time 
TGD* 7:00 2 h 5:00 12:00 

Initial Battery 

SOE (%) 
TGD* 75 25 25 95 

* UD: uniform distribution, TGD: truncated Gaussian distribution 
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Fig. 7.  Aggregated charging energy requested by the EVs that plug in per hour 
and number of EVs that plug in per hour. 

Three candidate regulation market designs are compared, 
Cases A, B and C. Case A is the current design of the PJM 
market, where the EVA submits symmetric regulation capacity 
offers and responds to D. RCS. This should be considered as 
the reference case. In case B, the EVA still responds to D. 
RCS, however it can submit asymmetric regulation capacity 



offers, i.e. 
RTuprt is not necessarily equal to 

RTdnrt . Finally, in 

Case C the EVA submits symmetric regulation capacity offers 
but now it responds to T. RCS. The characteristics of the 
examined regulation market designs are summarized in 
TABLE III . For each case both EV fleet scenarios are 
evaluated. 

TABLE III . CHARACTERISTICS OF THE REGULATION MARKET DESIGNS  

Market 

design 

case 

RCS 

provision 
Regulation offering Fleet scenarios 

Case A  D. RCS 
Symmetric,   

, ,w w=RTup RTdn
t tr r  

2 scenarios: Fleet 

A and Fleet B 

Case B  D. RCS 
Asymmetric, 

, ,w w¸RTup RTdn
t tr r  

2 scenarios, Fleet 

A and Fleet B 

Case C  T. RCS 
Symmetric,   

, ,w w=RTup RTdn
t tr r  

2 scenarios, Fleet 

A and Fleet B 

 

TABLE IV. INPUT DATA FOR LEVEL 1 AND LEVEL 2 OPTIMIZATION PROBLEMS 

OF THE CASE STUDY. DATA SOURCE: [24]. 

 Input Type Data 

OD:  Tuesday, 22 April 2014 

Level 1 problem 

,lDA E
t  

Point 

Forecast 

Weighted DAM price of the PJM region 
of 21 Apr. 2014 is used as naïve price 

forecast for the next day, the OD. 

lRup
t , lRdn

t  
Point 

Forecast  

Regulation market credits for dynamic 
and traditional resources (diverse values 

due to different mileage ratio are 

calculated from (2)). RMCPC and 
RMPCP of 20 Apr. 2014 were used as 

naïve forecasts for the OD. Perfect 

performance score, equal to 1, in used in 
(2) for RMCP calculation.   

,
,wl
RT E
t  

10 

Scenarios 

Differences between DAM-RTM price 

for the previous ten days (between 11-20 
Apr. 2014) are calculated and then 

applied to DAM price point forecast to 

generate 10 price scenarios.  

 
, (/ )

,w
dc up dn
tR  

10 

Scenarios 

15min dispatch-to-contract ratio 

(up/down) calculation based on (1) from 

the real-world PJM D. RCS and T. RCS 
between 11-20 Apr. 2014. 

Level 2 problem 

 
,lRT E

t  
Point 

Forecast 
RTM price of 22 April  2014 

lRup
t ,lRdn

t  
Point 

Forecast 
RMCP price of 22 April 2014 

, (/ )
,w
dc up dn
tR  

10 
Scenarios 

Execution of the RCS scenario 

generation tool presented in subsection 
III.C every hour, 75min before each OH. 

Dispatch-to-contract ratio coefficients 
are then calculated based on (1) 

 

The input data related to market parameters for level 1 and 
level 2 problems are presented in TABLE IV. Some input 
parameters are modeled as simple point forecasts and some 
others are modeled via scenarios. In the level 1 problem, 100 

equiprobable scenarios are given as inputs (10 for 
( / )

,w
dc up dn
tR  

and 10 for ,
,
RT E
t wl ), while in the level 2 problem the 

equiprobable scenarios are 10 (10 ( / )
,w
dc up dn
tR  scenarios 

produced dynamically by the tool described in subsection 
III. C). Tuesday, 22 April 2014 is selected (arbitrarily) as the 
OD under examination. BOR charge is considered 2.983 
€/MWh ([24]). Fig. 8 depicts some price time series that are 
used as input in level 1 and level 2 problems. Point forecasts 
are not too close to the actual prices, especially for regulation 
market prices. This deviation however is challenging, since the 
level 2 problem should produce an optimal decision based on 
the updated prices, taking also into account level 1 binding 
schedules which were produced based on non-perfect price 
forecasts. Price forecasting is out of the scope of the current 
paper. 
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Fig. 8.  Input price time series for level 1 and level 2 optimization problems. 

In Figure 9, results from the level 1 problem for DAM 
participation are presented for Cases A, B and C. For both EV 
fleet scenarios the DAM strategy is the same, since the 
problem at this level is based on the initial EV fleet estimation 

(reference case). DA
te  for submission in the DAM is presented. 

The 100 scenario-dependent second stage, advisory 

, ,,RTup RTdn
t tr rw w  are also depicted and the diversity of their 

possible future realizations per scenario is obvious. In Case A, 

based on the rule for symmetric offers, , ,=RTup RTdn
t tr rw w . 

However, in case B there is a clear preference for greater 
provision of regulation down rather than regulation up. This is 
an intuitive result because, in contrast to regulation up, 
regulation down provision coincides with the main target of the 
EVA, EV charging. Thus, the EVA creates a profit by selling 
regulation down capacity and charging the EVs during real-
time by responding to regulation down activation commands. 
Finally, in Case C the strategy is similar to Case A, but greater 
standard deviation among the second-stage advisory schedules 
is recorded. In the same figure, the aggregated maximum rated 
charging power of the fleets presented (purple line) together 
with the aggregated, scenario-dependent max. RT charging 



power which gets reduced as the EV fleet batteries reach high 
SOE. This reduction is a result of the incorporation into the 
optimization models of the Constant Current-Constant Voltage 
(CC-CV) charging strategy which is very popular for lithium-
ion battery systems. The SOE threshold for method change is 
considered 85% for all the EVs. The reader is referred to [10] 
and [18] for detailed information of CC-CV modeling. It is 
finally noticed that the energy purchased in DAM by the EVA 
is lower than the total charging needs of the reference fleet 
(5495.6 kWh) because of (a) the expectation for regulation 
down provision which commands the EVs to charge and (b) the 
arbitrage between DAM and RTM market. Arbitrage 
opportunity is obvious at hours 1:00-2:00. For these hours 

scenario-dependent ,tpop w schedules are produced which 

equal the ,
RTup

tr w  values of the corresponding scenario. 

However, the EVA does not submit demand bids in the DAM 
for those schedules, because the model estimates that energy 
purchase in RTM would be more profitable.  
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Fig. 9.  Results of the level 1 problem (optimal DAM participation strategy)3. 

In Fig. 10, regulation down capacity offer results from the 
rolling optimization process of level 2 are presented for one 
scenario (out of ten). As stated before, the level 2 problem is 
executed 75 minutes before the OH and only the regulation 

                                                           
3 The rated charging power equals ( )Öä

chrg
i i

i

PL P . The max. RT charging 

power becomes lower than the rated charging power at high SOE ([10],[18]).  

capacity offers for the next OH are binding. As an example, the 
solution of the problem at 15:45 (right axis) creates binding 
schedules for the OH that begins at 17:00 (front axis). The 
schedules for the subsequent time horizon are just advisory and 
are replaced by the next rolling executions (i.e. the execution at 
16:45 creates binding schedules for the OH that begins at 
18:00). Only results for fleet B are depicted due to space 
limitations. Since the rolling process is continuously updated 
with the latest EV fleet status, the advisory schedules are 
modified in each solution. It is obvious that the lower number 
of EVs that finally plug in for charging (Fig. 7) lead to 
continuously reduced regulation down capacity offers as the 
problem evolves in time. In cases A and C regulation down 
offer is much lower than in case B which is an expected result, 
as discussed earlier for level 1 results (Fig. 9). Finally, an 
interesting result is that the advisory schedules produced by the 
level 2 problem (Fig. 10) are not closely related to level 1 
advisory schedules (Fig. 9). The updated information close to 
the OH leads to updated advisory schedules and more robust 
decisions. 
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Fig. 10.  Results Regulation capacity offers produced from level 2, look-ahead 
optimization problem for one scenario out of ten. In black the binding offers, in 
other colors advisory, look-ahead schedules. 

In Fig. 11, the final binding regulation capacity offers are 
presented for the whole time horizon, together with the actual 
RCS broadcast to the EVA at a 4sec frequency for Fleet A 
scenario. In Fig. 12, the same quantities are presented for fleet 
B scenario. By comparing Fig. 11 and Fig. 12 it can be inferred 
that the regulation offering strategy is similar in two scenarios 
but in fleet B scenario the regulation offers are lower, since the 
level 2 model is continuously updated with the latest 
information about the EV fleet. In addition, the lower offers in 
fleet B scenario lead to lower RCS magnitude. Up and down 
regulation offers are equal in cases A and C, as expected, while 
in case B the tremendous increase of regulation down offer is 
obvious. Finally, the RCS requests that could not be served are 
presented in black color. In fleet A scenario, the portion of 



RCS that is not served is almost negligible in Cases A and B 
and very low in case C. The unserved RCS requests however 
increase in fleet B scenario, mainly during the first hours of the 
OD. This result is explained by the variable behavior of fleet B. 
The level 2 problem is initially based on the reference fleet 
estimation which is not accurate. As time goes by, the 
algorithm is updated with the latest EV data and the offers are 
adjusted to meet actual conditions. So, after some unanswered 
RCS requests in the beginning, the EVA can respond to the 
RCS requests for the remaining period of time. Finally, the 
difference in T. RCS trajectory is obvious in Case C compared 
to the D.RCS trajectory of cases, A and B.   
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Fig. 11.  Fleet A. Regulation market results for cases A, B and C for the whole 
problem horizon 

In Fig. 13, the actual real-time charging process of one EV 
(out of 1000 EVs) is presented. The reduced charging power 
above 85% SOE due to CC-CV charging method modeling is 
obvious. The charging schedule is a result of level 3 and level 4 

programs. The level 3 program allocates 
5min
ipop  to the EV. 

When 
5min
ipop  is assigned, regulation up provision can be 

requested by the EV, which implies a reduction of the charging 

rate that can vary between zero and 
5min
ipop . Regulation down 

can be requested when the EV charges with a rate lower than 

the maximum possible. Allocated 
5min
ipop  (produced in level 

3), is presented together with regulation up and down requests 

(produced in level 4). The summation of 
5min
ipop  and 

regulation up and down requests results to 
4s
isp .  

One feature of the level 2 problem is that its look-ahead 
strategy creates look-ahead advisory charging schedules for the 

EVs. In Fig. 14, these advisory look-ahead schedules are 
presented for one EV and for one scenario. Level 2 problems 
produce these schedules in quarters. The value of the tool for 
dynamic EV fleet status update (subsection D) is obvious. The 
EV was initially expected at 18:00 with initial SOE 65%, thus 
the problem produces advisory schedules until 18:00 when it is 
realized that the EV has not plugged in. Then, a new expected 
arrival time is calculated and assigned to the EV [Fig. 6(d)] for 
the next execution. The EV finally plugs in at 20:00 with initial 
SOE 50%. The actual data are then taken into account and the 
advisory schedules are based on them. 
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Fig. 12.  Fleet B. Regulation market results for cases A, B and C for the whole 
problem horizon 
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Fig. 13.  
5min
ipop , regulation up and down requests and SOE trajectory for one 

EV. 

The precision score of the cases under evaluation is 
calculated from (3) and is depicted in Fig. 15. Its value will 
determine the final compensation based on the performance-
based regulation mechanism (2). For Cases A and C one score 
is calculated (referred to the regulation band) but for case B a 



diverse score is calculated for upward and downward 
regulation. For the majority of hours, the precision score is 
greater than 99%. Lower scores (≈97.5%) are recorded for case 
B, fleet B at hours 16:00 and 17:00 and for Case C at hours 
18:00 and 2:00. Focusing on Case C, fleet B scores the lowest 
value, 24.5% at hour 18:00. This is an expected result based on 
the unserved RCS request of the third hour of Figure 12(c). 
However, apart from the low score of this particular hour a 
general comment is that even under uncertain EV fleet 
behavior, the optimization framework can handle the 
uncertainty, mainly due to the rolling execution of the level 2 
problem and the developed tool for dynamic EV fleet status 
update. The EVA is able to achieve a) high precision score that 
does not reduce the regulation profits noticeably and b) 
participation as a reliable regulation provider in the regulation 
market. 
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Fig. 14.  Advisory charging schedules of the level 2 problem for one EV out of 
1000 and one scenario out of 10. 

Finally, in Table V, numerical results after the execution of 
the developed framework for the OD are presented. In rows 3-
6, the different cost/profit components and the total charging 
cost (row 7) for the OD is given. DAM strategy is independent 

of the fleet scenario. It is obvious that the EVA pays more in 
the RTM than in the DAM. This is an expected result, since as 
explained earlier (Fig. 9), the DAM demand bids are lower 
than the requested energy. What is also worth pointing out is 
that in Case B, there is a big reduction in DAM cost and a 
noticeable cost increase in RTM. This is due to the fact that 
more regulation provision means more charging via regulation 
activation and the amount of energy is debited at the real-time 
price. Finally, with the current regulation market prices the 
profits for regulation provision outweighs the energy costs and 
EVAs can achieve a net profit from their combined 
participation in energy and regulation market. In rows 8-11, 
some statistics about the aggregated regulation capacity offers 
and the total activated regulation are presented. In cases A and 
C upward and downward offers are equal, while in case B, the 
tremendous increase of downward regulation is recorded, 
which is the key driver for increased EVA profits in this case. 
Finally, in rows 12-14 the total EV fleet charging energy 
request for each case is depicted, together with the energy that 
was finally delivered by the EVA. A deviation is recorded 
which leads to some EVs which are not charged at the 
predefined SOE (97%). It is assumed (arbitrarily) that a final 
SOE of 92% is a minimum accepted SOE level that satisfies 
the EV drivers. In case A, 18 EVs and in case B 17 EVs do not 
reach this satisfaction level. Although the number of 
unsatisfied EV owners is the same between the two EV fleet 
scenarios, in fleet B only 750 EVs plug in for charging, thus a 
lower relative performance is reached. In case C, the number of 
unsatisfied EV owners increases up to 41 and 46 for fleet A 
and B respectively. These results should be taken into careful 
consideration by the EVA since disappointed owners could 
withdraw their participation in the smart charging program.  

 

Table V: NUMERICAL RESULTS 

1 
 

Case A Case B Case C 

2 
 

Fleet A Fleet B Fleet A Fleet B Fleet A Fleet B 

3 DAM cost*  (€) 64.66 64.66 17.41 17.41 51.93 51.93 

4 RTM cost*  (€) 120.28 77.42 163.56 117.71 128.26 80.40 

5 Regulation market profit**  (€) 235.57 179.49 455.64 342.69 166.60 111.84 

6 
BOR charges for uninstructed deviation 

>20% (€) 
14.88 10.96 6.75 5.24 14.60 11.45 

7 Total charging cost (ú) -35.74 -26.44 -267.92 -202.34 28.20 31.95 

8 Regulation up offer (kW-h) 5238.19 3950.67 1780.46 1341.07 4882.88 3868.08 

9 Regulation down offer (kW-h) 5238.19 3950.67 24638.47 17816.94 4882.88 3868.08 

10 Regulation up activation (kWh) 664.81 495.08 193.80 138.84 1491.65 1146.70 

11 Regulation down activation (kWh) 714.76 533.84 3283.07 2371.06 1734.86 1408.73 

12 EV fleet charging energy request 5495.64 4105.64 5495.64 4105.64 5495.64 4105.64 

13 EV fleet energy delivered 5472.99 4087.86 5465.78 4065.67 5349.26 3978.44 

14 EVs number with SOE final <92% 18 18 17 17 41 46 

* A two-settlement system is adopted for financial settlements between DAM and RTM. **Adjusted with the performance score. 
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Fig. 15.  Precision score calculation. For case B, only the score for regulation 
down score is presented. The score for regulation up is always 1. 

V. CONCLUSIONS 

An innovative hierarchical four-level optimization 
framework has been developed to model the optimal 
participation of EVAs in day-ahead and real-time energy and 
regulation markets in conjunction with the optimal real-time 
charging management of the EV fleet. The development and 
integration of two additional tools into the framework allow for 
regulation control signal scenario generation and for dynamic 
EV fleet status update during real-time operation. The 
proposed platform can provide an in-depth analysis of the 
optimal EVA strategy under various electricity market designs 
and could be utilized as a consulting tool to assess the impact 
of alternative electricity market designs and new market 
products on the market integration of plug-in electric vehicles. 
A case study is presented, where three different regulation 
market designs are examined. Two EV fleet scenarios are also 
examined, one that behaves as estimated and one that behaves 
different than initially expected. The total market participation 
cost for an EVA is also quantified. Three major results are 
concluded. Firstly, the developed framework can successfully 
handle the uncertainty in EV fleet behavior for almost all of the 
hours, making the EVA a reliable regulation provider. 
Secondly, a better performance is achieved when the EVA 
responds to the dynamic regulation control signal rather than 
the traditional one. Under the dynamic signal, the profits for 
the EVA are much higher and the number of EV owners 
satisfied by the charging performance is also greater. Satisfied 
owners is a key challenge for the sustainability of smart 
charging programs. A dynamic regulation signal is a current 
practice of PJM, however the majority of electricity markets 
broadcast only one signal which is similar to the traditional 
one. Under the smart charging paradigm and the upcoming 
market integration of limited-energy resources, those markets 
should consider the adoption of the dynamic regulation control 
signal. Finally, opportunity for asymmetric regulation offering 
highly promotes the provision of regulation down reserve, a 
strategy that creates much higher profits for the EVA. 
However, an abundance of flexible resources that provide 
cheap regulation in the future could drastically suppress 
regulation market prices and in such cases the actual profits 
would be much lower. 

REFERENCES 

[1] International Energy Agency (IEA), “Global EV Outlook 2015,” 
[Online]. Available: http://www.iea.org/evi/Global-EV-Outlook-2015-
Update_1page.pdf 

[2] R. J. Green,  “Electricity Wholesale Markets: Designs now and in a 
Low-carbon Future.” The Energy Journal vol. 29, issue 2, pp. 95-124, 
2008. 

[3] NREL (2013) “Market evolution: Wholesale electricity market design 
for 21st century power systems” Technical report NREL/TP-6A20-
57477, 2013. [Online]. Available: 
http://www.nrel.gov/docs/fy14osti/57477.pdf 

[4] MERGE Project (2010). “Specifications for EV-grid interfacing, 
communication and smart metering technologies, including traffic 
patterns and human behavior descriptions” WP1, Task 1.1, 1.2 & 1.5, 
Deliverable D1.1.  [Online]. Available: http://www.ev-merge.eu 

[5] J. Tomic and W. Kempton, “Using fleets of electric-drive vehicles for 
grid support,” Journal of Power Sources, vol. 168, issue 2, pp. 459-468, 
Jun. 2007 

[6] A. Brooks, “Vehicle-to-Grid Demonstration Project: Grid Regulation 
Ancillary Service with a Battery Electric Vehicle,” California Air 
Resources Board, 2002. 

[7] R. Sioshansi and P. Delholm “The value of plug-in hybrid electric 
vehicle as grid resources.” The Energy Journal vol. 31, issue 3, pp. 1-23, 
2010. 

[8] Kempton W., J. Tomic, S. Letendre, A. Brooks and T. Lipman (2001) 
“Vehicle to grid power: Battery, hybrid, and fuel cell vehicles as 
resources for distributed electric power in California.” Univ, California 
Davis Institute for Transportation Studies, Rep. ECD-ITS-RR-01-03. 

[9] E. Sortomme and M.A El-Sharkawi, “Optimal charging strategies for 
unidirectional Vehicle-to-Grid,” IEEE Trans. Smart Grid, vol. 2 issue 1, 
pp 131-138, Mar. 2011. 

[10] S. I. Vagropoulos and A. Bakirtzis, “Optimal bidding strategy for 
electric vehicle aggregators in electricity markets,” IEEE Trans, Power 
Systems, vol. 28, no. 4, pp. 4031-4041, Nov. 2013. 

[11] I. Momber, A. Siddiqui, T. G. San Roman and L. Söder, “Risk averse 
scheduling by a PEV aggregator under uncertainty,” IEEE Trans. Power 
Systems, vol. 30, issue 2, pp. 882-891, Jul. 2014. 

[12] M. G. Vayá and G. Andersson, “Optimal bidding strategy of a plug-in 
electric vehicle aggregator in day-ahead electricity markets under 
uncertainty,” IEEE Trans. Power Systems, vol. 30, issue 5, pp. 2375-
2385, Oct. 2014. 

[13] E. Sortomme and K. W. Cheung, “Intelligent dispatch of electric 
vehicles performing vehicle-to-grid regulation,” in Proc. IEEE Int. Elect. 
Veh. Conf. (IEVC), Greenville, SC, USA, pp. 1–6, Mar. 2012. 

[14] L. He, C. Li, Y. Cao, Z. Yu and B. Fang, “Synergistic and priority 
control for electric vehicles power allocation in participating in AGC,” 
in Proc. Chinese Automation Congress (CAC), pp. 81-86, Changsha, 
China, 2013. 

[15] A. Mohamed, V. Salehi, T. Ma and O. A. Mohammed, “Real-time 
energy management algorithm for plug-in hybrid electric vehicle 
charging parks involving sustainable energy,” IEEE Trans. Sust. Energy, 
vol. 5, no. 2, pp. 577-586, Apr. 2014. 

[16] W. Su and M.-Y. Chow, "Performance evaluation of an EDA-based 
large-scale plug-in hybrid electric vehicle charging algorithm," IEEE 
Trans. Smart Grid, vol.3, no.1, pp. 308-315, Mar. 2012. 

[17] S. Sun, M. Dong and B. Liang, “Real-time welfare-maximizing 
regulation allocation in dynamic aggregator-EVs system,” IEEE Trans. 
Smart Grid, vol. 5, no. 3, pp. 1397-1409, May 2014. 

[18] S. I. Vagropoulos, D. K. Kyriazidis and A. G. Bakirtzis, “Real-time 
charging management framework for electric vehicle aggregators in a 
market environment,” IEEE Trans. Smart Grid, vol. 7, issue 2, pp. 948-
957, Mar. 2016. 

[19] F. J. Soares, P. M. R. Almeinda and J. A. P. Lopes, “Quasi-real-time 
management of electric vehicles charging,” Electric Power Systems 
Research, vol. 108, pp. 293-303, 2014. 

http://www.nrel.gov/docs/fy14osti/57477.pdf
http://www.ev-merge.eu/


[20] L. Yang, J. Zhang and H. Vincent Poor, “Risk-aware day-ahead 
scheduling and real-time dispatch for electric vehicle charging,” IEEE 
Trans. Smart Grid, vol. 5, no. 2, pp. 693-702, Mar. 2014. 

[21] R. J. Bessa and M. A. Matos, “Optimization models for an EV 
aggregator selling secondary reserve in the electricity market,” Electric 
Power Systems Research, vol. 106, pp. 36-50, Jan 2014. 

[22] J. Donadee and M. D. Ilić, “Stochastic optimization of grid to vehicle 
frequency regulation capacity bids,” IEEE Trans. Smart Grid, vol. 5, no. 
2, pp. 1061-1069, Mar. 2014. 

[23] C. Goebel and D. S. Callaway, “Using ICT-controlled plug-in electric 
vehicles to supply grid regulation in California at different renewable 
integration levels,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 729–740, 
Jun. 2013. 

[24] PJM Data Directory, [Online]. Available: http://www.pjm.com/markets-
and-operations/data-dictionary.aspx 

[25] PJM RTO, “PJM Manual 11: Energy & Ancillary Services Market 
Operations, Rev. 75,” Apr. 2015 [online], Available: 
http://www.pjm.com/~/media/documents/manuals/m11.ashx 

[26] RTO, “PJM Manual 12: Balancing Operations, Rev. 32,” Apr. 2015 
[online], Available: 
http://www.pjm.com/~/media/documents/manuals/m12.ashx 

[27] E-mail discussion with PJM personnel. 

[28] S. Stoft, Power Systems Economics: Designing Markets for Electricity. 
Piscataway, NJ, USA: IEEE Press/Wiley, 2002. 

[29] Vagropoulos, S.I., E.G. Kardakos, C.K. Simoglou, A.G. Bakirtzis and 
J.P. Catalao (2016) “ANN-based scenario generation methodology for 
stochastic variables of electric power systems.” Electric Power Systems 
Research, vol. 134, pp. 9-18, May 2016. 

 

http://www.pjm.com/~/media/documents/manuals/m12.ashx

