Impact assessment of performance-based regulation
market design on the performance of plug-in electric
vehicles aggregators: An integrated approach

Stylianos I. Vagropoulos and Anastasios G. Bakirtzis

Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki
Thessaloniki, Greece
stelvag@gmail.corrbakiana@eng.auth.gr

Abstractd In this paper a hierarchical, four-level DAE .
optimization framework for integration assessment of plugn /i day-ahead forecasted energy pricfMwWh

Electric Vehicles (EVs) in electricity markets is presented. The /tRUp(’ 9 torecasted regulation up(/down) pri¢&/MW-h]
developed framework incorporates coupled optimization routines

to model the optimal energy and regulation market participation / tl?ll;l/—’ F reattime energy price during hour t (average of
strategy and the optimalreal-time charging management of an subhourly reaitime prices within hour t)
EV fleet in a combined approach, which expands from daghead [$/MWHh] ’

horizon to secondby-second time resolution.The developed tool do,up(/ d) ) ]
allows for an in-depth assessment of electricity market designs in R, up (/down) dispatctto-contract ratio[p.u.]
integrating EV fleets through intermediary players, the EV chrg . .
Aggregators. The performance of statef-the-art market R the _rated charging power of each EV charging
products, such as the performancéased regulation market station [kW]

compensation ruled by FERC, can also be quantified. A detailed Pl parameter whie equals Zs long as an EV is
case study of 1000 EVs is examined, where tiIM market is lugaedin. 0 otherwie

modeled as the reference design. Emphasis is given on tis . plugg ! )
modeling of performance-based regulation market and the Variables

reference regulation market design is compared with two other DA .

cases, one that allows asymmetric regulation capacity offegn & day-ahead demand bifiMWh]
and one where EVs respond tdhe traditional, rather than the RT . .

dynamic regulation control signal. Finally, the case of perfect Qw reattime energy consumption, [MWh]
estimation of EV fleet behavior is compared with the case that rtRJ“F(/ dn

the EV fleet behaves differently from what was initially up (/down) regulation offe{fMW-h]

forecasied. The results presented unveil the value of the proposed dg deviation between redgime energyconsumption
framework. and dayahead demand bifiviwh]
Keywords—electric vehicles, electricity markets, regulation dq',W instructed deviation between rdahe energy
market, electric vehicle aggregator, optimization, stochastic consumption and daghead demand bifiWh]
programming U
de, uninstructed deviation between rémhe energy
.  NOMENCLATURE consumption and daghead demand biiMWh]
Indices PoR,,  preferred operating point of the EV fleet during
) ) . . reattime operationfMWh]
i (1) index (set) of electric vehicles Opgmin erred . it of thidh EV dur
t (T) index (set) of hourly time intervals P preferred operating point of theh EV during a
. . . : 5min interval [kKW]
k (K) index (set) of regulation control signalénvals, 45
i.e. 4 seconds sp chargng setpoint of thei th EV during a 4sec
w (N) index (set) of scenarios interval, [kW].
t index of current operating hour Il INTRODUCTION
Parameters The expected penetration of plirg Electric Vehicles

(EVs) in the near futur¢l] creates prospects for a cleaner,
Puw scenarioW probability of occurrence more sustainable, and more decarboniz¢dre. However, a
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large EV penetration rate should be carefully addressed, since The main contributions of this paper are:

irregular EV charging could have detrimental effects on power
systems and electricity market operation as well as on power
quality at the distribution level. In this contestiere is a vivid
interest in developing tools that would meet these challenges
effectively and an ongoing debate on optimal design of
electricity markets that could effectively integrate these
emerging technologidgg], [3].

Most research works that deal with the integration of EVs
in electricity market operations adopt the idea of an
intermediary party, the plug Electric Vehicle Aggregator
(EVA) [4] as a market play that participates in the market
arrangements on behalf of the EV fleet that the EVA
represents. However, besides the market operations, EVAs can
control the EV charging process during reale operation,
can coordinate the charging management of thefléat and
simultaneously take advantage of the flexibility in the charging
process by providing ancillary services to the System Operator
(SO), for example provision of regulation service by
responding to Regulation Control Signal (RCS) requists
[6]. Although previous studies highlighted the potential of EVs
to provide various kinds of ancillary servicgq, regulation
service is considered the most valugBle

EVA optimal participation in the Dajhead Market
(DAM) has been investigated in the past. Indicative works can
be found in[9]-[12]. Works that focus on the retine
charging management problem and RCS allocation algorithms
based on charging priority criteria can be found1i8]-[18].
Works related to the optimal EVA participation in DAM and
Real Time Market (RTMcan be found if19] and[20] but
they do not consider RCS allocation to EVs. Linking between
dayahead market participation and rdale charging
management can be found[#] and[21] where algorithms for
reattime charging control are presented, however no RCS
allocation priority is incorporated, battery dynamics are
ignored and in[9] RCS uncertainty manageent is not

1 Development of a hierarchical, felavel, optimization

framework that includes both market participation tools
and realtime charging management in a combined
approach Optimization problems for three of the four
levels have been developed in previous works of the
author [10],[18]). A level 2 problem, which models the
rolling, hourahead optimization strategyorf RTM
participation, is developed in this work and it is
integrated into the framework. This level is crucial for
accurate modeling of statd-the-art market designs
since it is the intermediary step that links DAM
participation with reatime EV fleet arging
management.

A qualitative assessment of the regulation market
remuneration mechanism under performabased
regulation market design. To the best of our knowledge,
it is the first time that such an-ttepth evaluation has
been carried out.

Compaison of three different regulation market
designs. The reference regulation market design is
compared with two other cases, one that allows
asymmetric regulation capacity offering and one where
EVs respond tdhe traditional, rather thathe dynamic
RCS Finally, the case of perfect foresight of EV fleet
behavior is compared with the case that the EV fleet
behaves diversely from what was initially forecasted.

Preliminary presentation of two innovative tools that
have been developed and incorporated into the
framework, one for RCS scenario generation and one
for dynamic update of the EV fleet status during -real
time operation.

In section Il the developed framework is described, and in
section IV a detailed case study is set up. Conclusions are

included. Finally, there are works in the bibliography that studgummarized irsection V.

the impact of EV integration in electricity markets and
regulation service, such §82] and [23]. However, in these
works neither RCS allocation in retiine nor the impact of
different RCS type selection (traditional or dynamic) on the
charging process has been addressed.

DESCRIPTION OF THE DEELOPED OPTIMIZATION
FRAMEWORK

In this paper an EVA manages a fleet lofEVs and
participates in the sheterm DAM and RTM by submitting
This work goes beyond the statbthe-art and proposes for optimal

demand bids and regulation capacity offers.

the first time a new hierarchical optiation framework Unidirectional interaction with #agrid is adopted, i.e. the EVs

suitable for impact assessment of stierin electricity market

are not capable of discharging energy back to the grid: they can

design on the performance of EV integration in electricityonly deviate from their scheduled operating point, by reducing
markets and power system operations. The developed platforgh increasing their charging rate. Although bidirectional

incorporates both algorithms for optimal bidding strated

interaction seems to be more profimlAdditional hardware

EVAs in the DAM and subsequent RTM sessions during thend protection are needed, and it leads to increased cycling

Operating Day (OD) as well as algorithms for the -teaé
charging management of EVs during rdale and the

wear of the battery. Although expansion of the framework for
bidirectional interaction is easy, the paper focuses only on

allocation of the RCS to the EVs in a coordinated manneunidirectional interaction which is considered bg tauthor as

Numerous qualitative and gatitative results can be derived the most appropriate choice for the initial EV integration phase.
from this platform, for example assessment of both thehe EVA also controls the charging process of each individual
efficiency of a candidate market design in integrating EVs angV in the fleet: once an EV is plugged in the EVA algorithm is
the efficiency of EV integration in an existing market responsible for modulating the EV charging power. In

settlement. To the best of our knowledge, no sdetailed
approach has been proposed before.

exchange, the EVA offers attractive tariffs to EV owners by
sharing part of the profits. The EV tariff structure is outside the

scope of this paper.



A. Considerations on market participation strategy when the regulation market actually closes, participants may

The developed framework can practically be parameterizegt/Pmit revised regulation capacity offers (which are binding)
for any kind of electricity market design that includes-day With the following restrictions:

ahead, intralay and reatime energy and/or ancillary service ) Offer Price may not be changed:; it is fixed to the one

markets. In this paper the PJM matketonsidered by the supmitted before 18:00 dahead (in case of EVA it remains
authors as one of the most advanced fpasked markets zero)

worldwide, is modeledis the reference case for two reasons. )

Firstly, it is the only market that provides free access-se@ b) Offer MW may be revised to reflect the most recent
RCS data [p4]) which are highly valuable for the problem Operating conditions; however, revised offer quantity may not
under consideration. Secondly, it is the first regional marke®€ higher tharthe one submitted before 18:00 etyead. No
under FERC surveillance that adopted the performamsed Penalties are imposed for revising the regulation capacity offers
regulation compensation mechanism, which is an advancd{26]).

market design that incentivizes the resources that are more According to PJM rules, the resources must offer a

efficient in providing regulation. The presentation of the baSi‘ieguIation capacity band, i.e. the upward capacity equm

aspects of theeference market design in this subsection willyo\wnward capacity25]. The minimum accepted quantity is
help the reader to follow the developed framework more easilyy 1 pmyy.

PJM operates a DAM, an RTM (balancing market), and = after collecting regulation offers, the SO adjusts them
markets for ancillary service provision. In this paper, there is §35eq on historical performance indices, ranks them in
focus on DAM, RTM and regulan markets (i.e. automatic scending order and calculates the regulatiprice
response service to SO Automatic Generation Contrqlomponents, the Regulation Market Capability Clearing Price
commands for Area Control Error correctiori24],[25])- (RMCCP), the Regulation Market Performance Clearing Price

Focusing on DAM participation, submission period for (RMPCP) and finally the Regulation Market Clearing Price
DAM offers/bids closes at 12:00 dajiead [24]). Before that (RMCP) and posts the results no later than 30 minutes prior to
time, the market participants (units, leserving entities) the start 6the OH[25].

submit supplyoffers / demandids for energy to the SO inthe  Tne gpportunity for revised regulation offerdaur before
form of quantityprice pairs (multstep funcons). The SO e OH, is actually the strongest motivation for the
clears the daphead energy and schedules reserve market Qyayelopment of a level 2 optimization program which is
co-optimizing energy and reserves using leaslt security assymed to be executed hourly, 75min betbie OH [Fig.
constrained resource commitment and dispatch. The SQZB)], in a rolling manner (in line with PIM rules), by taking

computes the cleared quantities systeie and per inio “consideration the latest EV fleet status and market
participant as wel as the daphead energy Locational .gngitions.

Marginal Prices. EVAs are assumed to execute their optimal

DAM participation program (level 1) at 11:30 dagead [Fig. (a) PJM Regulation Control Signal
2(2A)]. 0% ;

It is noted that in both DAM and RTM, the EVA is ; 8;2
considered as a sedtheduled, prictaking, market participant ¢ O-g
(rational assumption for small EV fleets) that submits quantity € -0.2 i

. . . 04 | il

only demand bids at the market price cap and regulation, “5-& | [T |y
capacity offers at zero offer prici24],[25]). It is assumed that & -0.3 -t ] Y V U
the submitted regulation offers are fully cleared, therefore the ™ oo ot o ot o ot ot o ot ot = o o o o ot o o = o

. - . . [eNeoNoNoNeoloNoNoloNoNojojojojojojojojlojojojoNo Nl
assigned regulation capacity equals the submitted offer. The CRXRNOLIANIICORNOVBIRITIIISS
same is true for the submitted demand bids. Platform expansion Time horizon (4secintervals)
for biddingcurves is possible but it is not modeled here. T RCS D.RCS

The resource owners that want to provide regulation in the (b) 15min Dispatchto-Contract ratio coefficients
PJM balancing area are required to submit no later than 18:00_ 1
i |

a) The maximum MW amountOffer MW - of regulation So5 ! ‘\ ‘ L ‘ ‘
capacity that the resowds willing to provide for the next OD. %

b) a price- Offer Price- that should reflect the capability of & MH\H\\\‘\‘M il H L
the resource in $/MW and the performance of the resource in 0 - A S
S/ AMW. Since t/ischedied participant the s e | |5 9 131721252993374140495357616060737761858993
Offer Price is zero. mRdc Up (T. RCS) ® Rdc Down (T. RCS)

Rdc Up (D. RCS) ® Rdc Down (D. RCS)

However, he above submissions are not binding. Until
60min prior to the beginning of the Operating Hour (OH), Fig-1. @) T. RCS and D. RCS (p.u.) for Ap22, 2014[24] and b) the

correspondingR™ "™ " coefficient in 15min intervals.

1pim Regional Transmissionr@anization USA. http://www.pjm.com/



When a resource participates in a PIJM regulation market, it In (2) Mileage Ratio is the ratio between the requested

can follow one of two candidate RCS; the tradiibRCS (T. mileage for the RCS assigned to the regulation resource and the
RCS) and the dynamic RCS (D. RCS). Actually, T. RCS is th&CS assigned to the traditional resource.
low filter Area Control Error signal which is sent to the That is -
traditional regulating resources and D. RCS is the high filter '
Area Control Error signal sent to the dynamic regulating For a traditional regulation resoureaileage ratio =
resoures. D. RCS is designed for resources with high MW i
ramp rates and rapid turnaround, such as batteries and Mileage T. RCS:1 (by definition)
flywheels. The resulting D. RCS signal pushes movement to Mileage T. RCS y
the outer edges of the resource maximum capacity, however, it
has a slight energy bias duetit@ duration limitations of these For a dynamic regulation resource, mileage ratio =
resource types. T. RCS was designed for resources with limited
ramp rate, but with no limitation on duration. T. RCS and D.  Mileage DRCS
RCS are complementary, that is, dynamic resources respond Mileage T. RCS
quickly but lack the ability to remaimt that level for an . o . o .
extended period of time while traditional resources require time Mileage Ratio is unitless and it is used only in Settlement
to follow the signal but have unlimited duratidaq]). Fig. 1 for Regulation Performance credit to resource. In thisepap
depicts T. RCS and D. RCS for ayddhe difference in the the mileage ratio for dynamic resources equals 2.93, which is
energy bias of the signals and the requested resourct¥ PJM mean value for June 2q24]. As stated before, the
movement (mileage) is obviouBJM broadcasts RCS every 2 pllﬁgrence in mileage between D. RCS and T. RCS is obvious
sec.In this paper it is assumed that tRES is positive if the in Fig.1(a).
SO commands the provision of upwardegulation In addition, the actual regulation credits are dependent on
(consumptionreductionin case ofEVA) or negativefithe SO o performance of the resource in providing regulation. In
commands the provision of downwaregulation(consumption  getajl, the credits are proportional to the actual hourly
increase in case &VA). performance score (2) that the resource waihieve, which

An easy way to calculate the energy bias of an RCaries between 1 for perfect performance and zero (0) for no
provided to a resource is to calculate the dispaiaiontract perform_ance. The performa_nc_:e score consists of three factors,
ratio, RY, defined as the ratio of the reahe activated Ccorrelation, delay and precision scd@), weighted equally.
energy to the contracted regulation capacity of this resourc asec_i on the very fast response capability of the litiam
during a defined time interval. Given that an RCS is broadca tteries of EVs, correlation and delay scores can be assumed

doup . e , 10 be equal to 1 and_ the only faqtor 'ghat needs to be calculated
by the SO every 4sed®™™ which expresses the energias s the hourly precisioncere, which is calculated at 10 sec
towards the upward direction is calculated in (1).Récd", samples from the absolute response error as a function of the

resource’s assi ned regul atio
which expresses the energy biaswdeds the dowmward g the number of samples (i.e. 360)gin hour t. ’

direction, is calculated from the sarequationbut for RCS

values < 0. In PIM the pemtage of the RCS allocated to one Actual Performance Scare Precisiorscore

resource is proportional to the percentage of assigned

regulation capacity of the specific resource, relative to the total 1.

SO assigned regulation capacifg). Therefore, theRCS =1 — & |error| (©)
instructed to the EVA equals the SO per unit (p.u.) REI§. [ Mid ¢

1(a)] multiplied by the EVA assigned regulation capacity. The

correspondingRdc coefficients for the RCS presentedFhiy. Error, _
1(a) are presented ifFig. 1(b). It is obvious that R™ Assignmen{ MWy

coefficients for T. RCS are much more energy biased than D.
RCS and follow one direction for longer time.

_ Responsg- RCGS

©)

B. EVA optimization problems

15minRC§p.u.)\ RCS-0 1 The hierarchical, foulevel optimization structure of the
225 @) developed simulation platform is described below. Interactions
between the involved parties and the optimization problems of

After regulation market clearing and after regulationthe EVA are presented iRig. 2. An overview of the binding

provision during an OH the resources are compensated for th&rr]d. _adv_lsory ;(I:hedules that arg_ p{_octj)lljcid %y thle f(()ju_r
participation for that OH as llows. optimization problems are presented in Table 1 and analyzed in

greater detail below.

a
RE*P(pu)=

Regulation Clearing Price Credit =
Regulation RMCCP Credit + Regulation RMPCP Credit =

Assigned Regulation (MW) Actual Performance Score
(RMCCP + Mileage RatioRMPCP) (2



(1) EVA interactions schematic diagram
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(2) EVA optimization problems
(A) Level 1: Optimal DAM participation strategy
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(B) Level 2: Optimal RTM participation strategy
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(D) Leve 4: Optimal RCS allocation strategy
+4sec +8sec +12sec
OH+5m

Fig. 2. (1) Interactions between the EVA, the Market Operator (MO), the SO
and the EVs. Level 1 (blue, dotted line), level 2 (purple, dashed line), level

1) Levell: Optimal DAM participation strategy

The first optimization level includes the problem of optimal
participation in the DAM session of the Operating Day (OD)
[Fig. 2(2A)]. The DAM optimization strategy of this papis
based on the framework developedii], namely a twestage
stochastic linear program with recourse which produces
optimal firststage decisions and secestdge, scenario
dependent schedules. Fisthgedecisions are seffcheduled,

qguantityonly demand bid submissions in the DAM;DA.

Secondstage schedules are produced for the EV fleet preferred
operating point during the OH,pop, and the revised

regulationcapacity offers (Offer MW),/*? and ;Y] " for the

OH. The second stage variables are not binding, they are just
advisory schedules, given the réiahe operation uncertainty
which is expressed via appropriate smérs for future
realizations of the random variables of the problem. The final
binding values pog , """ and r,X™" for each OH are

produced by the rolling solution of the level 2 probldag|
2(2B)].

It is worth pointing out the importance of the tatage
stochastic problem of this level, since it handles the
interdependency between instructed deviatim;',,,,, and

uninstructed dviation dd{’w in a systematic way. Deviation is
referred to a difference between the DAM cleared quantity,

qDA and the actual redime consumptionetRT . The former is

deviation owing to $stem Operator commands for regulation
activation during reafime operation and the latter is deviation
owing to the EVA. Due to the limited energy nature of EV
batteries as power system resources, regulation activation
which instructs a PEV fleet to clygr more or charge less than

(red line) and level 4 (green, dashed line) interactions. In yellow the EMthe scheduled preferred operating poipbp ,, could possibly

information that is exchanged once with the EVA (e.g. desired Sfate
Energy, EV battery size). Market operator and SO could be the same entity
some electricity markets. (2) Description of the EVA optimization problems.
Time arrangements are parameterized forRBk!I market. The colors are in

lead to an uninstructed deviation in a future operating hour.
fhis is a result of the fact that the total charging demand
request for a PEV fleeis apriori defined (by the actual

line with the first diagram. Each dot declares the time that each problem gharging needs), therefore any instructed deviation which

solved, and the solid part of line in levels 1 and 2 expsgbe time interval

for which binding decisions are produced.

TABLE |. OVERVIEW OF BINDING AND ADVISORY DECISIONSPRODUCED BY

THE OPTIMIZATION PROBLEM OFEACH LEVEL

Execution e Scenaricdependent,
i Binding schedules i
time advisory schedules
RT RTd
OD-1, at oA i Tow s Tow' s 084,
Level 1 . g, tI[LT] .
11:30 ti L T], wiN
Once an
rtRTqu I’tRTdn, déJ i
Level 2 | hour, OH | rRTWP (RTdn g .
75mim ti [t 47], wN
Level 3 | Every 5min pogP™" "/
Level 4 | Every 4sec spfs "

affects the remaining charging demand might becsaitelled

by an uninstructed energy deviation in a subsequent time
interval. Otherwise, early battery depteti or early battery
saturation may be inevitable, making the PEV fleet unable to
honor the assigned regulation. Finally, an important feature
which is highlighted through the developed model is the fact
that the EVA can take advantage of the uninstrucée@btions

and arbitrage between DAM and RTdhder a twesettlement
system[28],

qDA dtDA E (qDA eRM'/I') {R@ E$, (5)

where the term in parenthesis equals the total energy deviation
between the daghead position and redine actual energy
delivery, dg ,, (6) which is traded at the RT energy price,
/175 E. Instructed deviation, givelR™® coefficients presented
earlier, is calculated i7). Advisory pop , is calculated in

(8). The EVA' s o0 K9 iethe minmmézatibnwoh c t i



the cost of energy purchased both in DAM and RTMmaximum value of theRTU 9 petween all secorstage
(assuming a twsettlement system) minus the revenue from ) W .
regulation market participation. Alspenalties for excessive scenarios (produced also in level 1). 75 minutes before the OH
uninstructed imbalances between DAM and RTM are imposed€ EVA solves the level 2 problem that produqgesy (8)
Uninstructed deviations greater than 20% between DAM anwhi ch is (let’s say) 5 MWh an
RTM are penalized with the Balancing Operating Chargge p e OH, ( 1t RO =r T 55 apvy. I this
(BOR) [25]. Results ofthe level 1 problemsolution are U .

presated later in the case studfor the detailed problem €xamplelg;,, = 9-5=4 MWh(8). BOR charges are imposed on
formulation and a more idepth analysis of the problem the

L. 0 DA . .
reader is referred fd.0]. deviations greater than 20% o& ", i.e. outside [7.2

MWh,10.8 MWh] zone, therefore a BOR charge is debited for
_ DA T (7.25=) 2.2 MWh. Given thathie regulation dér is cleared,
deg , = é) 'éw :dé w ffé © let us assume that during rdmhe the EVA is commanded to
provide regulation which leads to an energy bias of 1.3 MWh.

ded , = RSP @e oo RY (7)  Therefore,d¢ , =1.3 MWh. From(6) the final dg ,, =1.3+¢
4)=-2.7 MWh.

pop,, = € -d¢, (8  minimize

o _g/tRup @Tup ﬁ-R[dnr R@ing
minimize
AYOER™ g +ap,8-Frw (@', de) 2 pniey” P, pnity" ™

t w

= =2a Rup ~RTup ?dn Adn . T up ~RTu dn “dn (10)
-ap, 8§ £y i Pe © -ap, ALFP IR 0 e

w t woot=tt
+ap, a& -,k dé Ity priy ® N A 3

8w B8~ (" 4R (pritf"7 Pk +ap, a§-[°d , pri’ pniet g

w t=t+

2) Level 2: Optimal RTM participation strategy RTan

Level 2 optimization includes the rolling process that generat deliy ary Wk amy [ itm
. . . . B¢ = r -
optimal binding schedules fay*""°, rR™and d&’ during the : f‘ief. ryTr -

) . el

OH (¢). This problem takes into account the DAM clearing ¥ \ e~

resultse™” which are already known, and optimizes the RTM —— B£-75min — B¢(§  OH[G1T] =~

quantities using twstage stochastic linear programming with _ A&l ey wh oy 1o
recourse including the latest availabfdormation about the SO'UtPnfOF de?, (KT  RTor -

EV fleet status and market conditions. It is executed once an B£=™*1 | ot i~

hour, 75min before the OH. Kig. 3, an illustrative example of S~
two consecutive executions is presented. The scheduled —Bg-75mn — Bg¢(G-1)  OH[G-2T] ~-
guantitiesare binding only for the second upcoming interval _ _

(purple line) and advisory for the receding time horizon dook Fi9-3- Two consecutiveolutiors of the level2 problem

ahead capability). This step is also presentdedgn2(2B). The

objective function(10) results from modification o{9). The MW-h
problem now expands from the cemt OH{ to the endbf the

. . . - 15
receding horizon. First stage decisions gfa"*, 1" and

dé;J and second stage decisions are the values of the same
variables for the meding horizon. Nomnticipativity

constraints have been added for héurResultsfor this level ) 190 | I I
are presented later in the case study. For more information on T T |

the omitted constraints, the reader is referrdd @ 63l f"j{v 7777777 | B o
An example of the market settlementthe market (o geby g | 1 o del,
participation philosophy of levels 1 and 2 and the ' 4

interdependence betweelg , and de’,, is presented ifig. 4 37

for one hour It is assumed that the EVA executes level 1
problem and submits a demand bid of 9 MWh in the DAM
which is cleared. Before 18:00 the EVA submits a regulation DAM RTM
offer of 6 MW (both upward and downward) which is the Fig.4. Example for energy deviation calculation




3) Level 3: Optimal preferred operating point allocation artificial 4-sec RCS time series which keep the statistical
strategy properties of the authentic BJ(i.e. autocorrelation). The tool

The optimization problem of level 3 alldes pop (which has is called every hour, befo_re th_e solution of the level 2 prob_le_m.
been determined 75min before the OH from levéd)? to the Lre]:irgoll\lgnsgrslfgr:) dn ﬁ;s'tbeéztr'lvﬁn pGg(rf:r?tégaitnufﬁﬂa:gﬁgtmCIal
EVs during the OH.pop allocationis not arbitrarily selected dgup(/ i)

but it is based on priority criteria. The priority criteria areRCS scenario generation th& , coefficients are
expressed by priority weightg and the smaller the weight, calculated1) and are incorporated into the level 2 model. Due
the higher the charging priority of an EV. Two mainto space limitations, the mathematical backgroundnigted
parameters determine theiquity weight for each EV: the from this paper. However, for the whole idea the reader is
energy required to complete the chargiri,, and the time referred to[29], where the same methodology has been

. | di Sy | proposed to create scenarios for other random variables (like
remaining until disconnection time, . For example, two EVS gjectric Joad, photovoltaic and wind energsoduction). The

with the same charging energy request will not be given thanN has been trained independently for scenario generation of

same priority if the first disconnects after one hour and thg¢, Rcs and T. RCS. IRig. 5 an example of D. RCS scenario
second disconnects after five hours. The first EV is aSSig”eé’eneration is presented. The full presentation of the

higher charging priority. The optimization framework for methodology will be esented in future work.
pog™" specification based on priority weights haseibe

5 1
developed iff18]. The basic idea of the optimization problem \DQ/. 0.75
is presented if{11)-(13). An evaluation of the impact of the 3 (5
combined priority weight parameterization is carried out in .2 o5
[18]. Due to the dynamically evolving nature of priority 5
weights, the mblem for pop re-allocation should be .o
executed very often. A reasonable value for this control level isg -0.5 1
a 5min interval Fig. 2(2C)]. In this case, the level 3 problem is &-0.75
solved 12 times ding an OH. 3 1
[0
@
i 5 A min
Minimize ? G QDOF? (19 Time horizon (4sec intervals)
====D.RCS  ===Scenario 1 Scenario 2
subject tag ponsm'” = pop (12 Fig. 5. Scenario generation for the D. RCS. At the'S@fe interval the
i scenario generation begins. Two created RCS scenarios that expand two hours
ahead are depicted in the figure.
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4) Level 4: Optimal RCS allocation strategy @ . f f + D SO
The fourth level includes the optimal allocation of the RCS to I A R T T,dep
the EVs. During realime operation the EVA is requested to e
respond to RCS which is generally broadcast from the SO \ : + [| SOE”
every few seconds (e.g., in PJM RTO every 2 s, in New York o ; Jpact pext Thi T.dep
ISO every 6 s). Térefore, each time a new RCS is broadcast, ' b ' N
the EVA solves the level 4 problem which adopts the same ) [ i . ] SOE
philosophy of the level 3 problem, i.e. when regulation down is (C)T'.o =Tt e T'hi Taep

I I I |

requested, the EV with the higher charging priority charges :
first. This level is nested irVel 3, since the final EV charging D
SOE™

setpoint determinationsg®®, depends on the earligpog™" @ ! ’ ; .

- -I—ilo li -I—iepr Tihi -I—idep
specification. A regulation up request impliepog™"
reductl_on. On the contrary, a regulation adorequest implies (e)TfIO t ;;T_exlﬂ]i_hi T.f’ep D SO
pog™ increase. The full problem description is presented in ' b '
[18].
M * — |
C. Scenario generation methodology for regulation control T T T,deP
signal SOE
The RCS is highly uncertain and almost impossible to be © *- " — éep Ifl '
forecasted. Therefore, an innovative methodology for RCS T T =TT

-Scenano generatlon hag -bee-n developed and has beﬁg. 6. The basic features of the proposed tool for dynamic EV fleet status
incorporated into the optimization framework that generate§pdate



When the EVA solves the level 1 problem, the optimal Al | simul ations were carrie
decisions are based on estimations/expectations about the EMrkstation, with CPU E2687W v2 at 3.4 GHz. The system
fleet behavior most possibly based on historical recordshas 128MB of installed RAM memory. The optimization
However, it is likely that during redgime operation the EVs pr obl ems were model ed in GAMS
will not behave as expected and changes in arrival time arf@PLEX 12.6.2 solver was used.
Stateof-Energy (SOE) at arrival time might be recorded. These
changes should be takeridraccount when the rolling solution
of the level 2 problem is carried out, since in different cases tl
decisions will be based on inaccurate information. A new to
has been developed and has been incorporated into t

optimization framework that dynangity updates the EV fleet stimation during reaime. Fleet B howver behaves

status with updated estimations as the optimization Wmdo‘@iﬁerently from what was initially forecasted (reference fleet).

moves forward in time or with the actual information when a is assumed that during reihe operation 25% of the fleet
EV plugs for charging. The basic idea of the tool is present(%g50 EVs) plugs in for charging 1 to 3 hours later than the

In Fig. 6. expected arrival time with an initial SOE deviatiomgang
Let us assume that the arrival time of each EV is recordedetween {15%,+15%)] from the expected, following a uniform
After many recordings, the EVA can fit a distribution to thedistribution. Another 25% of the fleet will never plug in and

arrival time, between min. and max. arrival tinTé? and -|-ihi_ the rest 50% will behave exactly as it was expected. The

. . . management of the EV fleet behavior during the -tiea
A uniform distributon is selected and the EVA calculates theoperation is arried out by the tool developed in subsecibn

mean value of the distributior’i’,-ex"jL [Fig. 6 (a)] which, when In Fig. 7, the EV number that plug in per hour is presented for

. . . the two EV fleet scenarios, together with the aggregated
Xp
combined with the expected arrival SOBOE™ together charging eneng requested by the EVs that plug in per hour.

form the pa& of the initially estimated EV behavior The rated charging power is 3kW and the desired final SOE is
(T®™ SOE™)2. As the level 2 problem is executed Setat97% for all the EVs.
TABLE Il. PROBABILITY DISTRIBUTIONS FOR THEEV FLEET PARAMETERS

A reference EV fleet has been created and its characteristics
e produced by random number generators that follow the
robability distributions of TABLE II. Two EV fleet scenarios,
]aeet A and B, are then created and evaluated. Fleet A equals
e reference fleet, assuming perfect EV fleet behavior

sequentially and as long as the QHjs still earlier tharTieXp"

exd : exd Xpy : e Mean | Standard | Min. Max.
(t _<Ti ), the pa|r_(l'i ,SOE™) is still used as the Distribution | 8T | S8l | e | Ve
estimated EV behaviorF[g. 6(a)]. In case the EV arrives Battery
earlier than expected, data are updated with theahones capacity (kwh)|  YP" 18 6.93 6 30

act ct - - .
(T, SOE™) [Fig. 6(b)]. If the EV arrives at the estimated Arrival Time TGD* 19:00 oh 16:00 | 1:00
time but with SOE*™' # SOE™ the actualSOE™ is taken into
i i Eat PRI TGD* | 7:00 2h 5:00 | 12:00
account in the level 2 problemT.{™ SOE™) [Fig. 6(c)]. _
Initial Battery TGD* 75 25 25 95

When! exceedsT,®" and the EV has not arrideyet, a new SOE (%)

. i * UD: uniform distribution, TGD: truncated Gaussian disfition
T®is calculated as the mean value betwd@f* and T"

[Fig. 6(d)]. This recalculation is executed dynamically each

_ exp( 1 _ . 1500 - - 250
time ¢ equalsT, and the EV has not arrived yétig). 6(e)]. g 1200 2002

i . w
In case thatl™®? reachesT" and the EV has not arrived £ ggp - 150
yet, then the algahhm assumes that the EV will not arrive at § 600 - 100 8
all and ignores it from the following executions of the level 2 g E
problem Fig. 6(f)]. Finally, there is always the chance that the ~ 390 50 =z
EV will arrive much later. In that casehenever it arrives the 0 - -0
EV status is updated wittT{®, SOE™) [Fig. 6(g)]. o hoen (2

mmmm Energy, Fleet A mmmm Energy, Fleet B
IV. CASESTUDY @ EV number, Fleet A A EV number, Fleet B

The developed optimization framework is examined in &ig.7. Aggregated charging energy requested by the EVs that plug in per hour
residential, night charging ase study where the EVA @andnumberof EVs that plug in per hour.
participates both in DAM and RTM sessions, while modulating  Three candidate regulation market designs are compared,
the charging of 1000 PHEVs during réiahe operation. Cases A, B and C. Case A is the current desfgthe PJM
market, where the EVA submits symmetric regulation capacity
offers and responds to D. RCS. This should be considered as
2 Departure timeT;%*" and desire®OE atT,"*" are considered knowand the reference case. In case B, the EVA still responds to D.

unchangeable in this paper, thus the tool focuses only on uncertaintyah ar RCS, however it can submit asymmetric regulation capacity
time and SOE at arrival time.




i RTup; i RTdn ; The input data related to market parameters for level 1 and
offers,i.e. r is not necessarily equal t . Finally, in ; A
c Cth [EVA bmit yt .q ?t' Yt f level 2 problems are psented inTABLE IV. Some input
ase e submits symmetric regulation capacity o erBarameters are modeled as simple point forecasts and some

but now it responds to T. RCS. The characteristics of th§ars are modeled via scenarios. In the level 1 problem, 100
examined regulation market designs aseammarized in

! . . . . ug dn
TABLE Ill. For each case both EV fleet scenarios ar€duiprobable scenarios are given as inputs (10F{E§Js
' an or =), while in the leve roblem the
evaluated d 10 for /R0'E), whil the level 2 problem th
TABLE Ill . CHARACTERISTICS OF THE REGULATION MARKET DESIGNS equiprobable scenarios are 10 (1ac’j[</:§ud dn Scenarios
Market | o~q , , i produced dynamically by the tool described in subsection
design provision Regulation offering | Fleet scenarios l1l.C). Tuesday, 22 April 2014 is selected (arbitrarily) as the
caseé : OD under examination. BOR charge is considered 2.983
N 5. RCS Symmetric, 2 scenarios: Fleel € / MWR4)).(Fig. 8 depicts some price time series that are
' P =r R Aand Fleet B used as input inelel 1 and level 2 problems. Point forecasts
Asymmetric, > scenarios. Floe are not too cIose'to the_ aptual prices, _espemally for re_gulatlon
Case B | D. RCS ' market prices. This deviation however is challenging, since the
ase rRTup  RTd Aand Fleet B - b
tw s tw level 2 problem should produce an optimal decision based on
Symmetric, 2 scemrios, Fleet the updated pricesaking also into account level 1 binding
Case C| T.RCS [RTUP =y RTGr A and Fleet B schedules which were produced based on-pefect price
il il forecasts. Price forecasting is out of the scope of the current
paper.
TABLE IV. INPUT DATA FOR LEVEL1 AND LEVEL 2 OPTIMIZATION PROBLEMS §
OF THE CASE STUDY DATA SOURCE [24]. =
Input Type H Data ;
OD: Tuesday, 22 April 2014
(]
Level 1problem ©
. Weighted DAM price of the PIM regiol =
/DAE Point of 21 Apr. 2014 i .
Forecast forecast for the next day, the OD
' 1617181920212223241 2 3 4 5 6 7 8 9101112131415
Regulation market credifer dynamic Time horizon (h)
and traditional resourcediyersevalues
. . . = = = [orecasted DAM Actual DAM
Point dllje tlo dlf'f?rent mileage ratire = = = Forecasted RMCP T Actual RMCP T
fRD, pRET calculated fron(2)). RMCPC and Actual RTM = = = = Forecasted RMCP D
Forecast RMPCP of 20 Apr. 2014 were used a Actual RMCP D
nai v e tsffo the®D. exfect . . ) -
performance score, equal to 1, in used Fig. 8. Input price time series for level 1 and level 2 optition problems.
(2 for RMCP calciilati .
: o caleL A 00— In Figure 9, results from the level 1 problem for DAM
Differences between DAMRTM price ticinati ted for C A B and C. For both EV
o for the previous ten days (betweenad participation are presented for Cases A, B and C. For bo
IRI.E e e Apr. 2014) are calculated and then fleet scenarios the .DAM strategy is .the same, since .the
applied to DAM price point forecast to problem at this level is based on the initial EV fleet estimation
generate 10 price scenarios. (reference casegP” for submission in the DAM is presented.
15min dispatcko-contract ratio The 100 scenaridependent second stage, advisory
dc, up(/ dn) 10 (up/down) calculation badeon(1) from RTup , RTdr ; ; ; ;
R Scenarios | the reatworld PIM D. RCS and T. RCS hw oy, w are also depicted and the diversity of their
between 1120 Apr. 2014. possible future realizations per scenario is obiwidn Case A,
: RTup — , RTdr
Level 2problem based on the rule for symmetric offers,, ™ =r",".
T Point However, in case B there is a clear preference for greater
i Forecast RTM price of22 Apiil 2014 provision of regulation down rather than regulation up. This is
an intuitive result because, in contrast to retjuma up,
S R Point RMCP orice of 22 Aoril 2014 regulation down provision coincides with the main target of the
U ol Forecast price of 2= Apri EVA, EV charging. Thus, the EVA creates a profit by selling
regulation down capacity and charging the EVs during- real
Execution of the RCS scenario time by responding to regulation down activation commands.
do,up( 0 10 generation tool presentedsabsection Finally, in Case C the strategy is similar to Case A, but greater
Row Scenarios | "M-C every hour, 75min beforeachOH. standard deviation among the secstage advisory schedules
Dispatchto-contract raticcoefficients is r rded. In th me figure. th r ted maximum rated
are thercalculaedbased or{1) S recorded. € same Tigure, the aggregate aximum rate

charging power of the fleets presented (purple line) together
with the agregated, scenardependent max. RT charging



power which gets reduced as the EV fleet batteries reach higlapacity offers for the next OH are binding. As an example, the
SOE. This reduction is a result of the incorporation into thesolution of the problenat 15:45 (right axis) creates binding
optimization models of the Constant Curr€ldnstant Voltage schedules for the OH that begins at 17:00 (front axis). The
(CC-CV) charging strategyhich is very popular for lithium  schedules for the subseqtiéme horizonare just advisory and

ion battery systems. The SOE threshold for method change @se replaced by the next rolling executions (i.e. the execution at
considered 85% for all the EVs. The reader is referrddGp 16:45 creates binding schedules for the OH that begins at
and [18] for detailed information of C&LV modeling. It is 18:00). Only results for fleet B are depicted due to space
finally noticed that the energy purchased in DAM by the EVAlimitations. Since the rolling press is continuously updated

is lower than the total charging needs of the reference fleetith the latest EV fleet statushe advisory schedules are
(5495.6 kwh) because of (a) the expectation for regulatiomodified in eactsolution It is obvious that the lower number
down provision which commands the EVs to charge anth@) of EVs that finally plug in for charging Fig. 7) lead to
arbitrage between DAM and RTM market. Arbitrage continuously reduced regulation down capacity offers as the
opportunity is obvious at hours 1:2000. For these hours problem evolves in time. In casé and C regulation down
scenariedependent pop ,, schedules are produced which offer is much lower tham case B which is an expected result,
RTup . . as discussedearlier for level 1 results(Fig. 9). Finally, an
equal the r, ™ values of the corresponding SCHOA interesting result is that the advisory schedules producéfueby
However, the EVA does not submit demand bids in the DAMevel 2 problem(Fig. 10) are not closely related tievel 1

for those schedules, because the model estimates that eneaglyisory schedules={g. 9). The updated information close to
purchase in RTM would be more profitable. the OH leads to updated advisory schedules and more robust

decisions.
(a) Case A: D. RCSsymmetric regulation offering

0 3000
£ 2500 // \\
S _ 2000 " s
k2 / ' o v\ :
& <1000 y4 - N\ 3
S 500 — -
< 0 . : = * 5 * X s
o 1617181920212223241 2 3 4 5 67 8 91011
Time horizon (h)
(b) Case B: Dynamic RCS, asymmetric regulation offering g
2 3000 T T\ g
£ 2500 - e
IS / . \
3= 2000 ——
£ = 1500 / LI
EZ 7 T\
< = 1000 —— -
% 500 I/ t H i : . \ s
- D ] . =5
<D( 0 ——T T T T |'|'|'|*‘1“I“I‘§M g
1617181920212223241 2 3 4 5 67 8 91011 3
Time horizon (h)
(c) Case C: Traditonal RCS
(2]
& 3000 —
2 2500 " N\
S _ 2000 / 1\
E’ 5 1500 / i ' \ Fig. 10. ResultsRegulation capacity offers produced from level 2, abkad
x Z 1000 / - 1 optimization problem for one scenariot®f ten. In black the binding offers, in
=l / other colors advisory, loekhead schedules.
& 500+
g 0+t In Fig. 11, the final binding regulation capacity offers are
161718192021 22 2?'%4(; 1n0ﬁ203r‘] (?1) 567891011 presented for the whole time horizon, together with the actual
oA d dbid Rated chardi RCS broadcast to the EVA at a 4sec frequency for Fleet A
RT regulation up offer RT regulation down offe scenario. IrFig. 12, the same quantities are presented for fleet
Max. RT charging power B scenario. By comparingig. 11 andFig. 12 it can benferred

that the regulation offering strategy is similar in two scenarios
but in fleet B scenario the regulation offers are lower, dinee

In Fig. 10, regulation down capacity offer results from the level 2 model is continuously updated with the latest
rolling optimization process of level 2 are presented for ongnformation alout the EV fleet. In addition, the lower offers in
scenario (out of ten). As stated befatiee level 2 problem is  fleet B scenario lead to lower RCS magnitude. Up and down
executed 75 mintes before the OH and only the regulationregulation offers are equal in caseand G as expected, while
in case B the tremendous increase of regulatman offeris
3 The ratedcharging power equalg (ph_ C'r,>°hf9) . The max. RT charging Obvious. Finally, te RCS requests that could notdeeved are

i presented in black color. In fleet A scenario, the portion of

Fig. 9. Results of the level 1 problem (optimal DAM participatatrategy?.

powerbecomes lower thathe rated charging powat high SOE[(L0],[18]).



RCS that is not served is almost negligible in Cases A and BVs. In Fig. 14, these advisory lockhead schedules are
and very low in case C. The unserved RCS rsigurowever presented for one EV and for one scenario. Level 2 prablem
increase in fleet B scenarioamly duringthefirst hours of the  produce these schedules in quarters. The value of the tool for
OD. This result is explained by thariablebehavior of fleet B. dynamic EV fleet status update (subsect®ris obvious. The
The kevel 2 problemis initially based on the reference fleet EV was initially expected at 18:00 with initial SOE 65%, thus
estimation which is not accurate. As time goes by, thé¢he problem produces advisory schedules until 18:00 when it is
algorithm is updated with the latds¥ data and the offers are realized that the EV has not plugged Then, a new expected
adjustedto meetactual conditions. So, after somaanswered arrival time is calculated and assigned to the Eig.[6(d)] for

RCS requestin the beginning, the EVA can respond to thethe next execution. The EV finally plugsat 20:00 with initial
RCS requests for theemaining period of time. Finally, the = SOE 50%. The actual data ahentaken into accourandthe
differerce inT. RCStrajectoryis obvious in Cas Ccompared advisory schedules are based on them.

to the D.RCSrajectoryof cases, A and B.

(a) Case A: Dynamic RCS, symmetric regulation offering

(a) Case A: Dynamic RCS, symmetric regulation offering

1500 — 1500
B W o B
g -—! : : g —
< -500 < -500
= -1000 et 5 -1000
= -1500 = -1500
S _2000 & 2000
& 2500 -2500
-3000 -3000
(b) Case B: Dynamic RCS, asymmetric regulation offering 1500 (b) Case B: Dynamic RCS, asymmetric regulation offering
1500 — T T T ]

(c) Case C: Traditional RCS

(c) Case C: Traditional RCS

1500
%888 — : - 1000
500 m | il T s %
2z -50% (W) Z -500
= -1000 = -1000
¢ 1500 2-1500
2 -2000 & -2000
< 0 .
L e e B B B B B I B I B B B B B B ; A g d g g d a0 0999999 9d
SBRIBIIBIZISIIRIRIISS 882888888888§888888
Time horizon (4s) _ Time honzon (4s)
= Assigned up regulation EVA RCS = Assigned up regulation EVA RCS
Assigned down regulation= E\/A RCS not served Assigned down regulatiom= E\/A RCS not served
Fig. 11. Fleet A. Regulation market results for cases A, B and C for the wholé&ig. 12. Fleet B. Reguldon market results for cases A, B and C for the whole
problem horizon problem horizon
In Fig. 13, the actual reaime charging process of one EV 3 100%_
(out of 1000 EVs) is presented. The reduced charging power < 2 L 90% 2
above 85% SOE due to @V charging method modeling is < (1) 80% &
obvious. The charging schedule is a result of level 3 and level 4 ¢ | | °§
. o - ) L 0p =
programs. The level 3 program allocatps’™" to the EV. e,/ e
in . . . - -3 60%
When pog™ is assigned, regulation up provision can be Sy RNLYIRIYILNESITLNGS
. . . . . OMNMOOOVWAOANMNANNOMNMOMOIT O
requested by the EV, which implies a reduction of the charging MOTTWLIoo "T_" °°h°° ° °’(43 )9. So3338
. Ime nhonzon S
rate that can vary between zero apd™" . Regulation down e POP Regulation up request
Regulation down request === SOE

can be regested when the EV charges with a rate lower than

the maximum possible. AIIocateﬁopsm'” (produced in level Fig.13 pog™", regulation up and down requests and SOE trajectory for one
3), is presented together with regulation up and down requesty.

(produced in level 4). The summation opopSm'" and The precision score of the cases under evaluation is
calcubted from(3) and is depicted ifrig. 15. Its value will
determine the final compensation based on the performance
based regulation mechanigi@). For Cass A and C one score

ejs calculated (referred to the regulation band) but for case B

regulation up and down requests resultsm‘és.

One feature othe level 2 problem is that its loe&head
strategy creates loekhead advisory charging schedules for th



diverse sore is calculated for wpard and downward of the fleet scenario. It is obvious that the EVA pays more i
regulation. For the majority of hoyr¢he precision score is the RTM thanin theDAM. This is an expected result, since as
greater than 99%. Lowe s cor es ( =97. 5 %) eaplamed realierdfig. d)etdhe OAM rdenarad sbiels are lower
B, fleet B at hours 16:00 and 17:00 and for Case C at houthan the requested energWhatis alsoworth pointing outis
18:00 and 2:00. Focusing on Case C, fleet B scores thestowehat in Case B, there is a big reduction in DAM castl a
value, 24.5% at hour 18:00. This is an expected result based paticeable cost increase in RTM. This is due to the fact that
the unserved RCS request ottthird hour of Figure 12(c). more regulation provision means more charging via regulation
However, apart fromthe low score of this particular hour a activation and the amounf energyis debitedat the realtime
general comment is that even under uncertain EV flegtrice. Finally, with the current regulation market pricks
behavior, the optimization framework can handle theprofits for regulation provision outweighs the energy costs and
uncertainty, mainly due to the rolling executiontioé levd 2 EVAs can achieve a net profit fromtheir combined
problem and the developed tool for dynamic EV fleet statuparticipation in energy and regulation market. In row$18
update. The EVA is able to achieve a) high precision score thabme statistics about the aggregated regulation capacity offers
does not reduce the regulation profiteoticeably and b) and the total actated regulation are presented. In saseand
participaton as a reliable regulatioproviderin the regulation C upward and downward offers are equal, while in casbe8
market tremendous increase of downward regulation is recorded,

which is the key driver for increased EVA profits insthase.
0.9 \
0.8 ~
X TN L ]

Finally, in rows 1214 the otal EV fleet charging energy
4
ﬁﬁ

request for each case is depicted, together with the energy that
was finally delivered by the EVA. A deviation is recorded
which leads to some EVs which are not charged at the
predefined SOE (97%). It is assumed (arbitrarihgt a final

SOE of 92% is a minimum accepted SOE level that satisfies

State-of-Energy (p.u.)
o
~

22 the EV drivers. In case,A8 EVs and in case B 17 EVs do not
65615753 2945 BN reach this satisfaction levelAlthough the number of
- 4137332925211713 9 5 1 'Sg:‘”;c@a unsaﬂs_ﬂed EV owners is the same t_)etween the two EV fleet
me horizon (15min intervals) & scenariosin fleet B only 750 EVs plugn for charging, thus a

lower relative performance is reached. In castn€number of
Fig. 14. Advisory charging schedules of the level 2 problem for one EV out ofynsatisfied EV owners increasap to 41 and 46 for fleet A
1000 and one scenario out of 10. and Brespectively These results should be taken intveful
Finally, in TableV, numerical results after the execution of considerationby the EVA since disappointedwners could
the developedramework for the OD are presented. In rows 3 withdraw their participation ithe smart charging program.
6, the different cost/profit components and the total charging
cost(row 7)for the OD is given. DAM strategy is independent

TableV: NUMERICAL RESULTS

1 Case A Case B Case C

2 Fleet A Fleet B Fleet A Fleet B Fleet A Fleet B
8 DAM cost* ( € ) 64.66 64.66 17.41 17.41 51.93 51.93
4 RTM cost ( € ) 120.28 77.42 163.56 117.71 128.26 80.40
5 Regulation meket profit* ( € ) 235.57 179.49 455.64 342.69 166.60 111.84
5 || B Chargeﬁrz%g/io”ft;”gtewe"iaﬁm 14.88 10.96 6.75 5.24 14.60 1145
7 Tot al charging -35.74 -26.44 -267.92 -202.34 28.20 31.95
8 Regqulationup offer (kWh) 5238.19 3950.67 1780.%6 1341.07 4882.88 3868.08
9 Regulationdown offer (k\WWh) 5238.19 3950.67 | 24638.4 17816.94 | 4882.88 3868.08
10 Regulationup activeion (kwh) 664.81 495.08 193.80 138.84 1491.65 1146.70
11 Regulationdown activation (kWh) 714.76 533.84 3283.07 2371.06 1734.86 1408.73
12 EV fleetchargingenergy request 5495.64 4105.64 5495.64 4105.64 5495.64 4105.64
13 EV fleetenergy delivered 5472.99 4087.86 5465.78 4065.67 5349.26 3978.44
14 EV's number with SOE final <92 18 18 17 17 41 46

* A two-settlement system is adopted for financial settlements between DAM and*RAdjusted with the performance score.
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Fig. 15. Precision score calculation. For case B, only the score for regulation
down score is presented. The score for regulafois always 1. (5]

V. CONCLUSIONS [6]

An innovative hierarchical fodevel optimization
framework has been developed to model the optima[l7
paticipation of EVAs in dayahead and redime energy and 1
regulation markets in conjunction with the optimal tale
charging management of the EV fleet. The development al
integration of two additional tools into the framework allow for
regulation conbl signal scenario generation and for dynamic
EV fleet status update during rdahe operation. The
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A case study is presented, where three different regulatigiy;j | . Momber, A. Siddiqui, T. G. San

market designs are examined. Two EV fleenseios are also
examined, one that behaves as estimated and one that behave
different than initially expectedrhe total market participation [12]
cost for an EVA is also quantified. Three major results are
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