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Abstract—Recently, there has been a surge in interest in gen-
erating synthetic power systems samples of large size to provide
power systems engineering researchers with realistic methods to
evaluate their new algorithms and discoveries. Many authors
have shown that real network samples show marked trends
that are easily discernible. The synthesis of new samples poses
important questions: can the trends observed be reproduced?
what is the right metric to ascertain the reproduction quality?
This motivate this work, whose focus is the validation of synthetic
power systems samples.

Index Terms—Synthetic Test Cases, Validation, KL-Divergence

I. INTRODUCTION

As the power system evolves and changes, there is a need
for modern test cases that match the complexity, size, and
peculiarities of power systems. Synthetic cases such as [1] or
[2] offer the benefit of openly sharing model data, which is
currently often lacking in power systems research.

There are two main approaches to generating large scale
synthetic models. The first, with [1] as an example, applies
the wealth of engineering knowledge to the synthesis, to form
something akin to a large optimization problem, constructing
the samples imposing reasonable constraints and selecting
the remaining features optimally based on cost metrics. The
second, with [2] as an example, views the system agnostically,
and identifies structural, statistical trends, which are then
replicated through a randomized generation technique. Both
approaches have their shortcomings and strengths. Engineering
knowledge can lead to over-optimization, since the real world
often forces suboptimal compromises that are very hard to
capture. The random approach, on the other hand, struggles
to capture rigid structures enforced by engineering practice
that end up creating dependencies, which a purely random
approach has difficulty capturing in multivariate distributions.
Therefore, it runs the risk of creating nonsensical results.
It should be further noted that the envisioned uses of these
two approaches tend to differ. The engineering-knowledge-
optimization approach tends to produce single cases, while
the random approach strives to create ensembles that enable
statistical test, e.g. Monte Carlo, to be performed.

We view the role of validation in this sense as twofold. First
and foremost, it should offer some assurances and confidence
to users that the synthetic systems are in fact reasonable. This
is done by demonstrating matching trends, which are generally
reported as distributions. A secondary purpose though, is
to discover signature differences between synthetic and real
systems and suggest corrections that randomize or constrain

and correlate some features to better reflect reality. In other
words, validation asks the question where and how are signa-
tures of synthetic girds manifesting themselves, and suggest
recourse measures. We delve further into this iterative nature
of validation in the second half of the paper.

A. Related Work

There has been quite a bit of literature in the last fifteen
years examining the structural nature of the power system
as a graph using statistical methods for the analysis and
synthesis of grid samples. References such as [2]–[6] all
examine the topological characteristics of the power system
focusing on metrics like the degree distribution, average path
length, clustering coefficients and so forth. Delving further into
the power system perspective, [7]–[10] emphasize in various
ways that more detailed attention must be paid to the electrical
characteristics that underpin the topological ones, essentially
arguing that engineering practice must play a greater role in
the analysis.

There are several works from the planning literature that
examine how synthetic networks can be created [11]–[13].
A recent project focused on dataset synthesis is [1], that in
general optimizes various costs, such as minimizing conductor
length, while ensuring reliability, over a given geographic
footprint.

As will be shown, the synthetic systems start to show
certain signatures when the correlation between operation
and structure are examined. In [14] and [15] the correlation
between the system topology and bus type (load, generation,
or connection) is addressed via an entropy type measure.
In [16] we made somewhat similar observations about the
coupling of a power systems operating point and its topology,
by examining properties of the Zbus with respect to the
generation vector. These observation are thematically linked to
other works in literature that deal with the so-called electrical
distance described in [17]—which is essentially the pseudo
inverse of the DC powerflow’s B matrix. In [18] transmission
expansion is explored based on considering the singular value
decomposition of the pseudo inverse of the B matrix. Sim-
ilarly, [7], [19], [20] all describe the electrical distance as a
preferable description for power system graphs. In [21], based
on simulations of operating conditions, another learned graph
is utilized to identify risks for cascading failures.

Before providing some examples of tests, we describe the
basic validation methodology in Section II and provide some
further intuition on the divergence measures used in Sec-
tion III. Section IV provides examples comparing real data and



the ACTIVSg2k test case project1, an earlier version of which
was also used in [22]. It is worth noting that the ACTIVSg2k
model is generated following the first approach we mentioned,
of constructing a single case that is geographically embedded
in a region and uses power systems engineering guidelines to
guide the synthesis. Finally, section V concludes and points at
future directions of investigation.

II. METHODOLOGY

Validation, is the process by which one confirms, authen-
ticates, or verifies whether something is true. Sometimes it
involves a single metric, but more often it is an agreed upon
process or set of procedures with recourse. At hand is the
question of ensuring that synthetic systems, that claim to
be representative of real power systems, are indeed valid
representations. That is, if one is presented with a set of data
that the owner claims is a valid power system the validation
process should be able to say yes or no. We present here a
methodology for a systematic evaluation of data sets, as a first
step towards the long term validation process objective.

A. KL-Divergence and Hellinger Distance

When analyzing the features of large power-grid samples
some clear statistical trends emerge. For a single feature,
there is a wide variety of possible distribution to capture the
empirical statistics with a law that depends on few tunable
parameters. Whenever possible, we wish to fit a statistical law
to the particular quantity under study because that naturally
allows to denoise the empirical statistics. If a good fit is found,
also the comparison between cases becomes more rigorous and
can be handled by the Kullback-Leibler Divergence [23]:

DKL(p‖q) =
∞∫

−∞

p(x) log

(
p(x)

q(x)

)
dx. (1)

The KL-divergence has the following operational meaning.
Suppose an observer seeing independent samples xi wants to
decide if they are from distribution q(x) or p(x). If they truly
are from p(x) the probability that the observer will reject the
hypothesis that they come from q(x) decreases exponentially
with the number of samples xi at a rate equal to DKL(p‖q).
That means that if the KL-divergence of the two distributions
is small, for many samples xi from q(x) will appear to be
compatible with p(x).

An often cited shortcoming of the KL-divergence is that
it is not symmetric an does not obey the triangle inequality,
meaning that it is not strictly speaking a “distance.” This is not
too problematic in the current application since we are always
comparing an empirical distribution to a functional fit, i.e., the
direction is clear. Nonetheless, the Hellinger [24] distance is
used as another divergence measure. The Hellinger distance
can be written as,

DH(p||q) =
√
1−BC(p, q), (2)

1https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2k/

where,

BC(p, q) =

∞∫
−∞

√
p(x)q(x) dx (3)

is the Bhattacharyya coefficient. This is shown in [25] to
obey the triangle inequality and is therefore a valid distance.
Interestingly, [26] show that both the KL-divergence and the
Hellinger divergence are special cases of the α-divergence
family. While this is mainly a nice observation, it further
helps support the fact that, as will be shown, the two behave
similarly. That is, when the KL-divergence is small so is the
Hellinger distance and vice versa.

An added benefit of using the Hellinger distance, is that it
relates to the total variation distance, δ(p, q) as:

D2
H(p, q) ≤ δ(p, q) ≤

√
2DH(p, q). (4)

Therefore, the Hellinger distance provides a bound on how far
the two distributions could differ from each other at any given
point. For all DH(p, q) < 1/

√
2 this gives a non-trivial upper

bound on the most extreme error between an estimate q and
the empirical distribution p.

Once a function, q(x; θ∗), is identified with optimal values
for parameters θ∗2, the following steps are used for validation:

1) q(x; θ) is fit to the synthetic data
2) Parameter values are compared to ensure they are similar
3) Divergence values are examined to ensure they are

sufficiently small.

What constitutes “similar” for parameters or “sufficiently
small” for the divergences is somewhat subjective. Instead
of focusing on the strict thresholds, the goal of this paper
is to illustrate how the methodology is applied. Specific
numerical values can always be decided on based on the
specific application and may even be modified as more data
becomes available and helps illuminate the extent of common
ranges.

B. Quantile Function

For certain properties, no clear statistical law can be found,
and empirical statistics are more reasonable to use. In these
cases, a suitable methodology is to use the cumulative distribu-
tion function and its inverse, the quantile function, to establish
validation ranges. The validation criteria are formulated as:

• quartile range [x, y] maps to values in the range [a, b],

where some tolerance may be added. For example, we might
say that the 40–80% quartiles should map to values in the
range of [0.5, 1.1] for some attribute under investigation. This
approach has the simultaneous benefit and drawback that the
number of ranges identified can be increased or decreased for
more or less precision. This adds flexibility, but also allows to
blur the differences in trends, masking some differences.

2Parameters are found by maximum likelihood or similar fitting approaches.
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Fig. 1. Illustrative example for exponential distributions, of how the di-
vergence measures change as the parameters of the underlying distributions
diverge from each other.

III. MEANING OF DIVERGENCE

This section is meant to provide some intuition for the
divergence values. The values of the divergences, in general,
are hard to interpret. Therefore, an example is useful to
establish a rough baseline for the examples that come later.

Consider two Exponential distributions p and q, with pa-
rameters µp and µq respectively. In this case both DKL and
DH can be expressed in closed form,

DKL(p‖q) = ln

(
µq

µp

)
+

µp + µq

µq
(5)

DH(p‖q) =
√
1− 2µpµq√

µpµq(µp + µq)
. (6)

Letting α = µq/µp we can study how the divergences behave
when two distributions belong to the same family, but have
different parameters,

DKL(p‖q) = ln(α) +
1− α

α
(7)

DH(p‖q) =

√
1− 2α√

α(1 + α)
. (8)

These relationships are plotted in Figure 1. Note that at α = 1
both are zero, which cannot be shown on the log-scale plot.
For example if µq is about about double µp both divergences
evaluate to about 0.2.

IV. EXAMPLES

The following examples consider data from the three U.S.
interconnects: Eastern Interconnect (EI), Western Electric Co-
ordinating Council (WECC), and the Electric Reliability Coun-
cil of Texas (ERCOT). Additionally, the synthetic ACTIVSg2k
case created on the ERCOT footprint [1] is evaluated. Unless
otherwise noted, the following scheme is used to identify each
case:

Case Name Empirical Data Functional Fit

ACTIVSg2k
EI
WECC
ERCOT

A note on case size: The cases compared here are of
different sizes and one could rightfully argue this may affect
the statistical results. EI has around 60 000 buses, WECC
around 20 000, ERCOT around 6000, and ACTIVSg2k has
2000 buses. Also, a basic feature of the ACTIVSg2k is that it
is a compressed version of the ERCOT case in the sense that
it supports a total load in the same ball-park as the ERCOT
case and it has the same generation fleet but it has a third of
its buses, meaning that some load buses aggregate load that
in the ERCOT case is dispersed. Therefore, the goal of the
analysis is to identify trends which fit all three interconnect
cases. Since the three interconnects are an order of magnitude
apart, if a trend fits all three, it is reasonable to assume that
scaling does not play a major role.

A. Degree Distribution

Due to its prevalence in literature, we begin by considering
the degree distribution of the networks, which are fit with a
geometric distribution,

P(X = k) = p(1− p)k−1, k = 1, 2, . . . (9)

by letting p equal the 1/k̄, where k̄ is the average node degree.
Figure 2a shows the degree distributions for all four cases,
which are quite similar. Table IIa reports the estimated p
parameter, as well as the divergence measures from Section II.
The parameters are closely clustered together, meaning that
the average degrees of all four cases are similar (k̄ ≈ 2.5),
as are the divergence measures. Using the largest DH from
Table IIa, Equation (4) places a bound of 28% as the worst
possible variation, although the actual worst variation error is
about 10% lower.

Since the values for the synthetic ACTIVSg2k grid are
similar to the real cases, this particular test suggests it is
realistic. We note that the ACTIVSg2k grid did not consider
the degree distribution in its generation process. Instead, it
appears that this statistic emerges as a result of the geographic
embedding and utilization of the Delaunay Triangulation as
described in [1].

A recurring issue with the treatment of degree distributions
in the power systems literature, is that the physical repre-
sentation of a node is often not clearly defined. Although
commonly buses are treated as nodes, due to the typical
representation of cases in software, for topology analysis,
we believe that considering substations as nodes is a more
reasonable approach. From the power systems engineering
perspective, the reasoning is that substations are much more
frequently reconfigured for various reasons, from maintenance
to transformer balancing. The topological question, however,
is whether a particular region is connected to another and how,
which is best answered at the substation level.
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(b) Substation Degree Distribution

Fig. 2. Degree Distributions

TABLE I
DEGREE DISTRIBUTION PARAMETERS AND DIVERGENCES

Case p DKL DBC

ACTIVSg2k 0.38 0.11 0.17
EI 0.41 0.11 0.17
WECC 0.42 0.07 0.13
ERCOT 0.41 0.15 0.2

(a) Buses as nodes: Geometric distribution

Case p Discrete Coeff. DKL DBC

ACTIVSg2k 0.65 [1, 0] 0.13 0.17
EI 0.42 [0.84, 0.16] 0.07 0.13
WECC 0.36 [0.73, 0.27] 0.11 0.17

(b) Substations as nodes: Mixture Geometric and Discrete

The degree distribution is therefore reconsidered, where
buses inside a substation are grouped into “super-nodes.”
Unfortunately, substation data is not available for the ERCOT
case, which is therefore left out of this analysis. However,
since bus degree distribution in Figure 2a of ERCOT is similar
to the other interconnects, it seems reasonable to assume that
the substation picture should not alter dramatically. Results of
the analysis are reported in Figure 2b and Table IIb.

In an attempt to achieve a better fit to the distributions,
the method of combining a clipped geometric distribution
with a finite discrete distribution from [2] is applied in a
slightly modified manner. The coefficients of the discrete

distribution/polynomial in Table IIb are reported in decreasing
degree order so that the rightmost element corresponds to the
constant term. For example, [0.3, 0.7] represents 0.3z + 0.7.

While the divergence measures are reasonably small for
all cases, the parameters for the ACTIVSg2k case differ
more starkly from the other two. There is, however, a design
explanation for this discrepancy. In the ACTIVSg2k case no
substations are allowed to have a degree of one, which is
consistent with normal practice. The real cases do, however,
exhibit such radial substations. The lack of radial substations
creates an additional pole at 0 for the discrete probability
generating function, as seen by the coefficients in Table IIb,
which means a fundamentally different convolution in the
formation of the final probability mass function.

B. Cycle Distribution

In addition to the degree distribution, we consider the
minimum cycle distribution of the graphs. Cycles offer a way
to describe the “meshness” of the system. They also directly
relate to the classic circuit mesh analysis. In fact, Kirchhoff’s
work [27] used fundamental cycle bases for the application of
his famous voltage law. To obtain a better level of consistency,
we use minimum cycle bases in the following analysis, which
are calculated using the algorithm in [28].

The cycles of both the buses and substation graphs are found
to follow a Negative Binomial distribution, which is defined
as,

f(k; p, r) =
Γ(k + r)

k!Γr
pk(1− p)r k = 0, 1, . . . , (10)

where Γ(·) is the gamma function, p ∈ (0, 1) and r > 0. On a
technical implementation note, for this particular application
we map zero to 3, meaning that k = 0 implies that there are
3 edges in the cycle, since there are no cycles smaller than 3.

Once again the parameters are tightly clustered for the three
interconnects according the values in Table II. Interestingly,
the parameters do not vary too dramatically between the bus
(Table IIIa) and substation (Table IIIb) graphs, which means
that analysis can be focused on the bus level graph, where
more cases are available. ACTIVSg2k has quite different
parameters, which can also be observed visually in Figure 3,
where its mode is clearly to the right of the interconnect cases.

The operational implication of a higher concentration of
larger cycles, as in the ACTIVSg2k case, in still an open
question. Therefore, from the validation perspective, it merely
warrants a caution. It is entirely possible that this degree
of variation will not result in a large operational difference.
Future work will investigate the effect of altering these metrics
on the power system operations.

C. Surge Impedance Loading

At this point, attention is turned to a couple operational tests.
While the topological tests can indicate potential structural
issues with synthetic samples, the operational ones are of most
interest for the researchers who will be using the cases. Line
loading is considered as a fraction of its surge impedance load-
ing (SIL). SIL represents an impedance matched termination
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Fig. 3. Minimum cycle distributions and corresponding Negative Binomial
fit using both buses and substations as graph nodes.

TABLE II
NEGATIVE BINOMIAL FIT PARAMETERS AND DIVERGENCE MEASURES

TO CYCLE DISTRIBUTION

p r DKL DH

ACTIVSg2k 0.27 12.66 0.03 0.08
EI 0.73 1.60 0.02 0.08
WECC 0.73 1.32 0.01 0.05
ERCOT 0.74 1.76 0.04 0.11

(a) Buses as nodes

p r DKL DH

ACTIVSg2k 0.14 21.86 0.03 0.08
EI 0.64 1.52 0.01 0.05
WECC 0.61 1.42 0.01 0.05

(b) Substations as nodes

for a lossless line, in the sense that the voltage profile is flat at
the nominal voltage, when the line delivers its SIL [29]. The
fraction of SIL loading, shown in Figure 4 for two different
voltage ranges, roughly follows an exponential distribution,

f(x) =
1

µ
e−x/µ, x, µ > 0. (11)

Values for parameter µ and divergences are given in Table III.
It should be noted that µ ≈ 1 is to be expected, since it
suggests that lines are on average loaded at their SIL rating.
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(a) 80 < Vnom < 200kV
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(b) 200 < Vnom < 400kV

Fig. 4. Fraction of SIL loading

Since at SIL the voltage profile is flat and power systems
operation attempt to maintain voltages close to 1 p u , an
average SIL around one is quite logical. With the exception
of ERCOT for the higher voltage range, all the interconnects
exhibit µ close to one.

The ACTIVSg2k case has both a poorer fit to the exponen-
tial trend as well as a significantly higher average loading than
the other interconnects in both voltage ranges. This violation
is a bit more concerning as it could have impacts on other
studies. For example, the authors of [22] show that the LMPs
on the synthetic network follow similar patters as on a real
system, however, the figures appear to show different absolute
values for the LMPs. Since LMPs are closely related to system
congestion, the higher loading level is likely to impact these
sort of studies. It should be emphasized however, that we do
not claim to show this impact, as with the cycle distribution,
causal implication of differing distributions are outside the
scope of this paper, not currently known, and are left for future
work.

Our suspition is that the discrepancy may be attributed to
the optimization approach described in [1], as it tries to place
lines to maximize the power they will carry. This analysis
suggest this is not exactly what happens in the system, and in
fact, many lines are highly underutilized.

D. Angle Difference

The next operational feature considered is the voltage an-
gle difference, ∆θ, over an active line. Based on the DC-



TABLE III
EXPONENTIAL FIT TO SIL LOADING FRACTION

80 < Vnom < 200kV 200 < Vnom < 400kV

Case µ DKL DH µ DKL DH

EI 1.08 0.02 0.08 1.04 0.04 0.11
WECC 0.85 0.02 0.07 0.88 0.06 0.13
ERCOT 1.23 0.04 0.11 0.63 0.05 0.13
ACTIVSg2k 1.65 0.19 0.26 1.17 0.25 0.29
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Fig. 5. Quantile function of branch ∆θ.

Powerflow assumptions [30], ∆θ is directly proportional to
the power transfer. It is also closely related to system stability
[31].

A good functional fit was not found for the observed
distributions of ∆θ and therefore the quantile and numerical
view introduced in Section II is considered. Figure 5 shows
the quantile function or inverse cdf for the interconnect case
and ACTIVSg2k.

Based on the interconnect cases in Figure 5 reasonable
quantile mileposts are judged to be:

First quarter 0◦ ≤ ∆θ ≤ 0.1◦

Second quarter 0.1◦ ≤ ∆θ ≤ 0.5◦

Third quarter 0.4◦ ≤ ∆θ ≤ 1.0◦

Fourth quarter 1◦ ≤ ∆θ ≤ 35◦

The ACTIVSg2k lies outside of these ranges for all but
the last quarter. This corresponds with the observation in
the previous section that the ACTIVSg2k grid is on average
more loaded (with respect to SIL) than the other cases. It
is important to point out that the differences are not that
large, the first three quarters have very small angles. Given
the scale differences between the cases it is quite possible
that at least part of the difference is the degree of modeling
of very short, more “local” lines, which will typically have
much smaller angle differences. Nonetheless, this observations
merits further study to tease out why the differences may be
arising, and perhaps more importantly, if the differences have
any meaningful impact on other applications like OPF, SCOPF,
and so on.

To provide a similar quantitative comparison similar to
the divergence measure, we use the two-sample Kolmogorov-
Smirnov test, shown in Table IV. It is important to stress

that we do not suggest that the distributions are actually the
same, therefore we expect the null hypothesis to be rejected
(i.e. large test statistic and very low p-values). The test only
provides a relative interpretation of how a pair of cases
compare versus a different pair. This can be best seen in
the p-value, which indicates the probability that two samples
from the same distribution would produce the same result or
worse as the two test samples. Essentially, the lower the p-
value the less likely that the two samples were drawn from
the same distribution. While all the p-values in Table IV are
very small, meaning the samples are not likely to be drawn
from the same distribution, the exponent between ACTIVSg2k
and the other is an order of magnitude smaller. Since this is an
empirical, non-parametric test, the size of the samples is likely
to play a role. However, the ERCOT case is much closer in size
to ACTIVSg2k and likewise a similar order smaller than the
WECC and EI cases. Nonetheless, the ERCOT case compares
noticeably more favorably with the two other interconnects
than ACTIVSg2k.

V. CONCLUSION

The paper lays out a methodology for testing various metrics
and demonstrates a few useful ones. Presented examples
show that the engineering optimization approach to validation
is quite powerful and can match, without direct targeting,
structural properties like the degree distribution. However,
the coupled nature of operation and structure that the power
system exhibits is subtle and susceptible to over optimization.
As a remedy, some randomness championed by statistical
synthesis methods like [2] and [32] may need to be borrowed
and inserted into the optimization to account for certain
observable trends.

Realistic synthetic power system cases, in terms of com-
plexity and scale, are needed by the research community to
accurately support simulations. While the metrics discussed
here pertain to the static view of the grid, dynamics can be
expanded to in the future. The set of useful validation metrics
is an ever growing and changing set. It is therefore imperative
that a consistent and clear treatment is used for validation,
which can be improved over time and help iterate ever better
synthetic cases.
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