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Abstract—Increasing renewable energy penetration imposes a
problem as it proposes to solve one. In particular, generator-
side control for frequency regulation becomes increasingly dif-
ficult due to slow reaction of generators to meet urgent needs,
potentially caused by the stochastic nature of renewables. With
increasing integration of smart appliances and other controllable
loads which are able to sense, communicate and control, load-
side control helps alleviate this problem which not only reacts
fast but also localizes the disturbances. However, current methods
for optimal load-side control requires full information and full
controllability of nodes in the system. By framing the problem as
an optimization problem and applying saddle-point dynamics, we
obtain a control law that rebalances power and asymptotically
stabilizes frequency after a disturbance. We generalize previous
work [1], [2] to partial control over all nodes, which does not
require full information over the network, yet still achieves sec-
ondary frequency control. We verify these results via simulation.

I. INTRODUCTION

Frequency regulation aims to keep frequency of a power
system close to its nominal value, which is typically 50 or 60
Hz. As supply and demand fluctuates, so does the frequency at
each node, and such frequency deviation propagates over the
network, leading to potential blackouts. In the past, generator-
side control suffices for frequency regulation, and is typically
classified under three stages at different timescales with dis-
tinct goals. Primary frequency regulation or frequency control,
also known as droop control, is completely decentralized,
and aims to bring the system to stabilization, i.e. suppressing
the fluctuations, but not necessarily bringing the system back
to nominal values, and often operate in the timescale of
10−30 seconds. Secondary frequency control usually requires
a central regulator which carefully modifies the set points of
generation, in order to restore power interchanges and fre-
quencies to their nominal values, and is usually observed from
30 seconds, but takes up till 15 minutes. Tertiary frequency
control or economic dispatch is usually achieved to annihilate
the mismatch and lighten the load on secondary frequency
regulation.

A. Motivation for Limited Control Coverage
As renewable energy sources become increasingly utilized,

fluctuation in supply increases too, due to the lack of pre-
dictability in yield of renewable energy sources such as
solar or wind. While there have been improvements on the
predictability of these renewables [3], this has mostly been
insufficient for exact control, and thus frequency regulation
still remains a relevant problem. It will continue to grow as a
challenge in the advent of a new age of energy sources, as US
states aim for 50% renewables by as early as 2030 [4], and
also because alternatives such as battery storage programs are

far from being cost-effective, with break-even costs estimated
to be $197/kW [5].

Controllable loads, such as electric vehicle charging stations
and smart household appliances, have been touted to have
the ability to help decrease energy imbalance, and simulations
together with real-world demonstrations highlight the potential
of controllable loads [6]–[8]. However, in a large scale power
grid, not every node have controllable loads of the capability
to support frequency regulation, and participation in load-
shedding may not have a 100% penetration rate across nodes
geographically at all times, and therefore it is important to
consider situations where the load control coverage is not full.

Indeed, popular controllable loads proposed in literature
include smart appliances in households and electric vehicle
charging stations. Households are found densely in some parts
of the city and sparsely in others, and while placement of
electric vehicle charging stations are increasingly dense, ones
that are able to participate in frequency regulation may be lim-
ited by their geographical location and timing of participation.
Furthermore, charging stations may also be limited by their
current load demand and capacity, where it is possible that
employees have to swap spots mid-day to provide charge to
two or more cars per spot-day. In that case, new infrastructure
have to be introduced, which is oftentimes not advantageous
to the company. This subset of practical issues inhibiting full
control coverage over all nodes of the power grid highlight the
need for a more flexible control framework where not every
node has controllable loads.

B. Literature Review
The use of primal-dual dynamics for control started out

with the work of Kelly [9] and Low [10], [11] in network
resources and [12] for stability of primal-dual dynamics. It
has been in recent years transported to the power systems
community for frequency control by [1] where Zhao’s work
[13] in identifying power system swing equations as a primal-
dual dynamic sets the foundation for a series of other works
in this area (e.g. [1], [2], [14]). In [1], primal-dual dy-
namics was used to implement distributed load side control
for primary frequency regulation, in which they show that
frequency deviations at each node convey exactly the right
information about global power imbalance. Mallada et al.
[2] extended the idea to also implement secondary frequency
control, through the introduction of virtual line flows, which
are exactly the same as real flows in steady state. Lastly, [14]
further proposes a unified framework which integrates primary
frequency control, secondary frequency control and congestion
management. The primal-dual framework can also be used for
economic dispatch or tertiary control, as in [15] and [16]. Jokić



[17] employs a similar method to attain real-time primary and
secondary frequency control via setting of nodal prices instead
of controllable loads. Recent noteworthy advances include
passivity approaches for primary [18], [19] and secondary
frequency regulation [20] with load-side participation, which
offers increased flexibility over the use of Lyapunov functions,
allowing generalization to higher order models. There is a
much larger body of work on distributed frequency control
(see e.g. [21]–[24] and references therein for recent examples)
that does not employ the primal-dual framework.

Our work is most related to [1], [2], [14]. The key novelty in
our work is that we do not assume that all nodes participate in
load control, i.e. that the coverage of load control is limited,
and only require communication with the neighbors of the
controllable loads, which is specifically for the computation
of line flow. We assume that there is an estimated global
power imbalance, and show that (i) perfect estimation leads to
a distributed control for secondary frequency control, and (ii)
imperfect estimation leads to primary frequency control with
bounds on the frequency deviations at steady state.

C. Summary
In this work, we focus on load-side participation for primary

and secondary frequency control. In particular, assuming that
the power or frequency imbalance can be reported through a
distress signal in real-time, we show that a limited coverage
of nodes participating in load control can cooperate to yield
secondary frequency control. Our contribution in this work can
be summarized as follows:

1) Primary Frequency Control under limited control cover-
age.

2) Secondary Frequency Control when perfect prediction
of disruption in power supply is available.

3) Bounding the gap between nominal frequencies and
stabilized frequencies when errors in such predictions
are present.

4) Simulation of proposed control applied to a non-linear
system with adversarially chosen control coverage. This
demonstrates the effectiveness and robustness of our
control design in real system.

II. NETWORK MODEL & PRELIMINARIES

In this section, we present the network model in our analysis
and introduce notations used throughout the paper.

We adopt the model of Zhao et al. [1] and subsequently
Mallada et al. [2]. The stark difference of our model from
previous work is that we do not assume that all nodes admit
controllable loads, are able to communicate, or have frequency
dependent loads. We consider a power network described by
the graph G = (N,E) where N = {1, . . . , |N|} is the set of
buses and E ⊂ N×N is the set of transmission lines denoted
by either e or (i, j) such that if (i, j) ∈ E, then ( j, i) /∈ E. We
use the terms buses/nodes and edges/lines interchangeably in
this paper. We also consider a communication graph G ′A with
communication channels as edges linking a subset of buses A
to their neighbors on the power network. This is a subgraph
G ′A = (A,E ′) induced by the set of nodes A⊆ N. Throughout
our analysis, the following assumptions are made:

1) Lines (i, j) are lossless and characterized by their reac-
tances xi j.

2) Voltage magnitudes |Vi| are time-invariant for all nodes
i ∈ N, i.e. |Vi(t j)|= |Vi(tk)| for all time t j, tk.

3) Reactive power injections to buses and reactive power
flows are neglected.

We partition the buses as N =G∪L and use G and L to denote
the set of generator and load buses respectively. Generator
nodes i∈G generates electrical power from mechanical power
through AC generator and may also have loads. Load nodes
i∈ L have only loads but no generators. The subset A of nodes
N corresponds to active loads, i.e. nodes that participate in load
control, and requires communication with their neighbors (the
notation A here is intentionally repeated from the definition of
the communication graph as the subset of nodes we need for
the communication graph is exactly the load control coverage,
and we henceforth drop the subscript A from G ′A). We do
not assume that all nodes have frequency sensitive loads, and
identify the set of nodes with frequency sensitive load with F .

We further assume the system is three-phase balanced, and
the frequency deviation from nominal values ∆ωi is small
for all nodes i ∈ N and the difference between phase angles
θi−θ j are small across all links (i, j). We adopt a commonly
used dynamic model (as in [25]), assuming coherency between
internal and terminal voltage phase angles of generators, and
model their dynamics by the following swing equation (1a).
Correspondingly, load nodes require power balance as in (1b)
and line flow deviations are modeled via linearized dynamics
as in (1c). We consider these dynamics around an equilibrium
point (ω∗,P∗), and all variables in (1) refer to its deviation
from their corresponding nominal value. The notations are
abused here for brevity of presentation, as in [1]:

Miω̇i = Pm
i − (1i∈Adi +1i∈F d̂i)−∑

e∈E
CiePe, ∀i ∈ G (1a)

0 = Pm
i − (1i∈Adi +1i∈F d̂i)−∑

e∈E
CiePe, ∀i ∈ L (1b)

Ṗi j = Bi j(ωi−ω j), ∀(i, j) ∈ E (1c)

where di denotes an aggregate controllable load and d̂ := Diωi
denotes an aggregate uncontrollable but frequency-sensitive
load as well as damping loss at generator i and Mi is the
generator’s inertia. Pm

i is the mechanical power injected for
generator buses i ∈ G, and is the aggregate power consumed
by constant loads for load buses i ∈ L. Pi j is the line real
power flow from i to j. Cie are the elements of the incidence
matrix C ∈ R|N|×|E| of the graph G defined as Cie = −1 if
e = ( j, i) ∈ E, Cie = 1 if e = (i, j) ∈ E and Cie = 0 otherwise.
The incidence matrix C′ for the communication graph is sim-
ilarly defined. Finally we define Bi j := 3 |Vi||V j |

xi j
cos(θ n

i − θ n
j ),

where θ n is the nominal phase angle of the node (and not the
deviation). We refer the reader to Zhao et al. [1] for a detailed
motivation of the model.

We are interested in the situation where the system is
originally at an equilibrium, i.e. when ω̇ = Ṗi j = 0, and then
the system is perturbed locally. Consequently, at time 0, there
is a disturbance represented by the vector (of perturbations
on the mechanical power injection) Pm := (Pm

i , i ∈ G∪L) that
produces a power imbalance.



III. DESIGN AND STABILITY OF PRIMARY FREQUENCY
CONTROL UNDER LIMITED CONTROL COVERAGE

In this section, we design a distributed control mechanism
that rebalances the system while driving the frequency back
to its nominal value, even in the setting where not all nodes
participate in load control.

Following the footsteps of [1] and [2], we define an optimal
load control (OLC) problem as follows:

min
d,d̂,P,R

∑
i∈A

ci(di)+ ∑
i∈F

d̂2
i

2Di

s.t. Pm
i − (1i∈Adi +1i∈F d̂i) = ∑

e∈E
CiePe, ∀i ∈ N (2a)

Pm
i + P̂i−di = ∑

e∈E ′
C′ieRe, ∀i ∈ A (2b)

We would like to point out the subtle difference between our
work and the work of [1] and [2] is that we no longer assume
that the load control coverage is full, nor do we assume that
every node is communicable and admit frequency sensitive
loads. P̂i is a constant which serves as an additional predicted
contribution to the change in power and Re is a virtual line
flow. The purpose of including the former term will become
clear in Lemma 2 and Section IV. We make the following
assumptions:

Assumption 1: ci’s are strictly convex and twice continu-
ously differentiable.

Assumption 2: OLC is feasible. This implies Slater’s
condition hold since all constraints in OLC are linear [26].

Let νi be the Lagrange multiplier associated with (2a) and
λi for (2b). The dual of this problem can then be written as:

max
ν ,λ

min
d,d̂,P,R

L (d, d̂,P,R,ν ,λ ) (3)

where L (d, d̂,P,R,ν ,λ ) is:

∑
i∈N

[
νiPm

i +1i∈A (ci(di)−νidi)

+1i∈F

(
d̂2

i
2Di
−νid̂i

)
+1i∈A

(
λi(Pm

i + P̂i−di)
)]

+ ∑
(i, j)∈E

(
(ν j−νi)Pi j +1(i, j)∈E ′(λ j−λi)Ri j

)
(4)

By differentiation with respect to di and d̂i, we can obtain
that the minimizer satisfies:

c′i(di) = νi +λi, ∀i ∈ A and d̂i = Diνi, ∀i ∈ F (5)

which suggests that the controllable load should be set, when-
ever possible, via:

di(νi,λi) = (c′i)
−1(νi +λi) (6)

The maximum in (3) can only be attained if νi = ν j for all
i, j ∈ N and λi = λ j for all i, j ∈C′k where C′k is a connected
component of the virtual network. Substituting these back into

(4) implies that the dual of OLC can be equivalently written
as the maximization of:

Φ(ν ,λ ) = ∑
i∈N

νiPm
i +1i∈A(ci(di(νi,λi))−νidi(νi,λi)) (7)

−1i∈F

(
Diν

2
i

2

)
+1i∈A

(
λi(Pm

i + P̂i−di(νi,λi))
)

Lemma 1. The function in (7) is separable, i.e. Φ(ν ,λ ) =
∑i Φi(νi,λi), where:

Φi(νi,λi) = νiPm
i +1i∈A(ci(di(νi,λi))−νidi(νi,λi))

−1i∈F
Diν

2
i

2
+1i∈A(λi(Pm

i + P̂i−di(νi,λi)))

Additionally, the Hessian of Φi is given by:

Hi =

[
1i∈A(−d′i)+1i∈F(−Di) 1i∈A(−d′i)

1i∈A(−d′i) 1i∈A(−d′i)

]
where d′i =

∂di
∂νi

= ∂di
∂λi

.

Proof. Proof is direct and therefore left out.

Therefore strict concavity holds only when the node is active
and also has frequency dependent loads, as pointed out in [1].

When restricting to looking at only νi or λi alone, as long
as the node is active, it is strictly concave in λi and if the node
is either active or has frequency dependent loads, then Φi is
strictly concave in νi.

Lemma 2. Given a connected graph G = (N,E), fix the
constants P̂i. Then there exist scalars ν∗,λ ∗k , ∀k (where
C′k is a connected component of the graph G ′) such that
(d∗, d̂∗,P∗,R∗,ν∗,λ ∗) is primal-dual optimal for OLC and its
dual if and only if (d∗, d̂∗,P∗,R∗) is primal feasible, (ν∗, λ ∗)
is dual feasible, and (5) and (6) hold.

In addition, if we set P̂i =
∑i∈(N−A) Pm

i
|A| (perfect prediction of

the disruption in supply) in (2b), we have that ν∗ = 0. In
particular, secondary frequency control is attained.

Proof. Since the OLC problem has only equality constraints,
we use Karush-Kuhn-Tucker (KKT) conditions [26] to charac-
terize the primal-dual solutions. In particular, (d∗, d̂∗,P∗,R∗)
is primal-dual optimal if and only if:

1) Primal Feasibility: Constraints in OLC ((2))
2) Dual Feasibility: νi = ν j for all i, j ∈ N and λi = λ j for

all i, j ∈Ck
3) Stationarity, i.e. Equations 5 & 6

Primal Feasibility is satisfied by assumption, Dual Feasibility
amounts to νi = ν∗ for all i ∈ N and λi = λ j for all i, j ∈Ck,
each connected component. Finally, Stationarity follows from
Eq. 5 together with dual feasibility. This ends the proof for
the first part of the lemma. For the second part of the lemma,
note that summing up the modified second constraint, we have
that:

∑
i∈A

(Pm
i −d∗i )+ ∑

i∈N−A
Pm

i = 0 (8)

and summing over the first constraint for all nodes, we get
that:

∑
i∈N−A

Pm
i +∑

i∈A
(Pm

i −d∗i )+ ∑
i∈F

d̂∗i = 0 (9)



and subtracting one of the equations above from the other, we
get that:

∑
i∈F

d̂∗i = 0 =⇒ ν
∗ = 0 (10)

which concludes the proof.

In the case where the prediction in the disruption of supply
or global power imbalance is inaccurate, we are able to achieve
primary frequency control and moreover, bound the deviation
from frequency obtained with respect to the error of prediction:

Lemma 3. Suppose for some ε > 0 we have |∑i∈A P̂i −
∑i∈(N−A) Pm

i |< ε . Then:∣∣∣∣∣∑i∈F
d̂∗i

∣∣∣∣∣< ε =⇒ |ν∗|< ε

∑i∈F Di

Note that in our setting of P̂i, we assume perfect prediction,
but also apply a “fair” distribution of the information. This
distribution of information (intuitively from (6)) affects the
amount of the load control and can be distributed in a more
optimal manner in the presence of either line flow limits or
caps on controllable loads.

IV. DISTRIBUTED OPTIMAL LOAD CONTROL

In this section, we focus on the case as is described in the
latter part of Lemma 2, i.e. when we set P̂i =

∑i∈(N−A) Pm
i

|A| , and
devise a distributed optimal load-side control mechanism. We
will assume that F 6= /0.

Let

L (P,R,ν ,λ ) = min
d,d̂

L (d, d̂,P,R,ν ,λ )

= L (d(ν ,λ ), d̂(ν),P,R,ν ,λ )

= Φ(ν ,λ )−ν
TCP−λ

TC′R

where L (d, d̂,P,R,ν ,λ ) as defined in (4), and d(ν ,λ ), d̂(ν)
as defined in (5). Similar to [1] and [2], we propose the
following partial primal-dual algorithm:

ν̇i = ζi

[
Pm

i −1i∈Adi−1i∈F Diνi−∑
e∈E

CiePe

]
, i ∈ G (11a)

0 = Pm
i −1i∈Adi−1i∈F Diνi−∑

e∈E
CiePe, i ∈ L (11b)

λ̇i = ηi

[
Pm

i + P̂i−di− ∑
e∈E ′

C′ieRe

]
, i ∈ A (11c)

Ṗi j = βi j(νi−ν j) (11d)
Ṙi j = αi j(λi−λ j) (11e)

where its name comes from the fact that part of the dynamics
(other than the dynamics on the load nodes i ∈ L) is the gra-
dient descent step as in the primal-dual algorithm. Identifying
ζi with M−1

i , and βi j with Bi j, the power system dynamics as
described in (1a) can be interpreted as a subset of the partial
primal-dual dynamics above, and we can identify the lagrange
multiplier νi with ωi. The parameters ηi and αi j determines
how much weight we want to place on information from the
virtual variables.

Consider the Lagrangian of the dual of the OLC problem:

LD(νG,νL,λ ,π) : = ∑
i∈N

Φi(νi,λi)− ∑
(i, j)∈E

π
N
i j (νi−ν j)

− ∑
(i, j)∈E ′

π
C
i j(λi−λ j) (12)

To amend for the partiality of the primal-dual dynamics we
used, consider the partial Lagrangian:

LD(P,R,νG,λ ) = max
νL

LD(P,R,νG,νL,λ ) (13)

and by considering the same constraints as before, we get
that the Lagrangian for the dual problem can be formulated
in a way where νL takes on its unique maximizer value. By
using the Envelope Theorem, we can then compute the partial
derivatives of (13) with respect to the variables (P,R,νG,λ ).

Indeed, partition the incidence matrix C (and correspond-
ingly for C′) between generator and load buses:

C =

[
CG
CL

]
and let

Φ(ν ,λ ) = ΦG(νG,λG)+ΦL(νL,λL)

where ΦG(νG,λG) = ∑i∈G Φi(νi,λi) and ΦL(νL,λL) =
∑i∈L Φi(νi,λi). We know that since we pick ν∗L to be the
maximizer, it satisfies:

∂LD

∂νL
(P,R,νG,λ ,ν

∗
L(P,R,νG,λ ))

=
∂ΦL

∂νL
(νG,λ ,ν

∗
L(P,R,νG,λ ))− (CLP)T = 0

Therefore, applying the Envelope Theorem on (13) to com-
pute the partial derivatives of LD(P,R,νG,λ ) with respect to
νG,λ ,P and R, we get:

∂LD

∂νG
(P,R,νG,λ ) =

[
∂LD

∂νG
(P,R,ν ,λ )

]
ν∗L(P,R,νG,λ )

=
∂ΦG

∂νG
(νG,λG)− (CGP)T (14a)

∂LD

∂λG
(P,R,νG,λ ) =

∂ΦG

∂λG
(νG,λG)− (C′GR)T (14b)

∂LD

∂λL
(P,R,νG,λ ) =

[
∂ΦL

∂λL
(λL)

]
ν∗L(P,R,νG,λ )

−(C′LR)T (14c)
∂LD

∂P
(P,R,νG,λ ) = ν

T
GCL +ν

∗
L(P,R,νG,λ )

TCL (14d)

∂LD

∂R
(P,R,νG,λ ) = λ

TC (14e)

and one can check that we end up with the same equations as
with what is desired from (11).

Note that the resulting partial Lagrangian is exactly in the
form of what Corollary 4.5 to Proposition 4.4 in [27] re-
quires, which showed that primal dual dynamics are projected
dynamical systems and establish that Carathéodory solutions
exist and are unique, before employing the relevant invariance
principle from [28] to show that primal-dual optimizers are



asymptotically stable under corresponding primal-dual dy-
namics. This implies that the proposed dynamics would be
asymptotically stable.

We restate the above result from [27] for completeness:

Corollary 4. For a C1 function F(x,z) : Rn×Rm→ R, if
1) F is globally convex in x and linear in z,
2) for each (x∗,z∗) ∈ Saddle(F), if F(x,z∗) = F(x∗,z∗),

then F(x,z∗) ∈ Saddle(F),
then Saddle(F) is globally asymptotically stable under the
saddle point dynamics and, moreover, convergence of trajec-
tories is to a point.

C1 functions are continuously differentiable functions and
Saddle(F) are the sets of saddle points of the function
F . Precisely, to invoke the corollary, we need to show the
following:

1) L continuously differentiable.
2) L globally concave in (νG,λ ) and linear in P,R.
3) For every saddle point (x∗ = (νG,λ )

∗,z∗ = (P∗,R∗)) of
L, if L(x,z∗) = L(x∗,z∗), then (x,z∗) a saddle point too.

Referring to Equations 6,7 above, since ci assumed to be
continuously differentiable, the function L is continuously
differentiable, satisfying the first condition. The function L,
by plain inspection, is concave in νG, λ and is linear in
P,R. Lastly, note that Slater’s conditions are assumed to hold,
and therefore saddle points are optimal and all optimal points
are saddle points. Therefore, if another point obtains optimal
solution, then it is a saddle point, as needed to be shown.

With the above results, we can state the main theorem of
this work:

Theorem 5. Assume the physical graph G = (N,E) is con-
nected, A 6= /0, F 6= /0, and L⊆F∪A. The system asymptotically
converges to an equilibrium point where stabilization takes
place.

If in addition, an exact estimate P̂i of the power step change
is available, secondary frequency control can be attained in
the converged state.

In the case of inaccurate predictions of the power step
change, the performance of the dynamics can be bounded as:

|ν∗|< ε

∑i∈F Di

where ε is the error in prediction.

V. NUMERICAL ILLUSTRATIONS

To demonstrate the performance of our load control to aid
secondary frequency control, we apply our control design on
the IEEE 39-bus New England interconnection test system.
We include here the single line diagram of the 39-bus system,
given in Fig. 1. There are 10 generators in the system and 29
load nodes, and unlike our analytical linear model, the simu-
lation used adopts a more realistic nonlinear set-up, including
e.g. nonlinear governor dynamics. The network parameters and
initial stationary points were obtained from the Power System
Toolbox data set [29].

In this simulation, we pick out a subset of nodes randomly
for load control, and choose one node randomly (among the
ones not chosen for load control) to add a step increase of 1pu
(based on 100MVA) of its current load. We do not limit the

Fig. 1: Line diagram of the IEEE 39 bus system. In our
simulations presented here, the load control cover nodes 1, 3,
30, 39 (top right) and the node experiencing the supply step
change is node 35 (bottom left). We use this to demonstrate
the ability to control loads even when controllable loads are
limited in coverage and geographically located far away from
the node experiencing disruption.
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Fig. 2: Comparison of the system with proposed load control.
Note that in this simulation, we only apply load control on 4
nodes and 1 node (located geographically far away from the
load control coverage) experiences a step change in its supply.
The system achieves secondary frequency control, compared
to primary frequency control without load control.

amount of load control that the nodes can utilize, and illustrate
that secondary frequency control can be attained. As suggested
by previous related work [1], we use the disutility function for
controllable loads ci(di) = 10d2

i .

A. Secondary Frequency Control under unlimited load control

As previously stated, nodes are chosen randomly for the
controllable nodes and the disrupted node. As a motivating
example, the results we present for illustration are for nodes 1,
3, 30 and 39, with the node experiencing disruption being node
35. With our control steps, we get the following dynamics as
shown in Fig. 2. These nodes are chosen to explicitly illustrate



Fig. 3: Stabilized Frequency Value (i.e. Primary Frequency
Regulation) as a function on the limit di of controllable loads
di at nodes under limited control coverage. Observe as the
limit on di passes a threshold of 0.6pu, Secondary Frequency
Regulation is attained.

the ability to perform secondary frequency control even when
the load control coverage is small, i.e. around 10%, and are
not close to the disrupted node in the system, that nevertheless
secondary frequency control is obtained. Simulations varying
the proximity of load control coverage to the disrupted node
suggests that the distance plays a part in the nadir of the
frequency deviation and the time taken for convergence.

In comparison, we show the resulting dynamics without
any load control. Note that governor dynamics also guide the
system to primary frequency control and therefore, we notice
that the system achieves primary frequency control. However,
the time scale at which it achieves primary frequency control
is out of the suggested time scale of 30s, which still suggests
the necessity of load-side participation. This is pointed out in
[1] previously, which showed a time improvement with load
side control.

B. Effects of the size of controllable loads
In the previous subsection, simulation is done assuming

controllable loads are able to take any load level. In practice,
however, there is a feasible region where any controllable load
can take value from, and therefore it is interesting to see the
effects of having a limited size of the load.

The experiment results are illustrated in Fig. 3. In particular,
regardless of the size of the controllable load, primary fre-
quency control is always achieved. As we decrease capacity of
controllable loads, the gap between the asymptotic frequency
and its nominal value increases. Its impact is similar to having
an inaccurate prediction of the power disruption, but the size of
the controllable load cannot be negative, which could instead
cause the system in certain cases to perform even worse than
it would without any predictions.

VI. CONCLUSION & FUTURE WORK

In this work, we propose a control design for frequency
control based on a linearized model of the swing equations.
By exploiting the amenability of the primal-dual dynamics,
part of the dynamics can be designed to match power system

dynamics. The control steps and virtual variables are updated
based on the values of the physical variables, which we leave
for the system to compute (and we only need to measure). We
prove that under some mild conditions, the system provably
converges with an accurate prediction of the disruption of
power, and bounds on the performances are provided with
respect to inaccuracies in predictions.

We implement our control steps on a simulation involving
non-linear dynamics, demonstrating the performance and ro-
bustness of our control design. An intuition to this robustness
is our usage of the accurate measured physical variable to
guide our control and virtual variables. We show that, even in
a system where controllable loads are located geographically
distant from the power disruption and with a limited load
control coverage, the proposed control drives the system back
to its nominal frequencies.

An observation made over the random simulations was that
the proximity of the controllable loads to the power disruption
affects the nadir of the frequencies and the time taken for
nominal frequencies to be attained. As such, an interesting
future direction would be to identify a relationship between
the set of controllable loads, the resulting virtual network,
the nadir of frequency dynamics and convergence time of
the control. Another future direction is to seek good real-time
estimates for Pm

i , and to better assign load control signals P̂i
(taking into account limits on loads) rather than the uniform
manner we are proposing.
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