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Abstract—Appropriate models of excitation systems, voltage
regulators, governors and power system stabilizers are funda-
mental for large-scale system stability studies which play a
crucial role in modern system operations. The specification of
the proportional-integral block with non-windup limiter, which
is given in IEEE Standard 421.5-2016 for use in excitation system
models, presents modelling challenges for standard power system
time-domain simulation packages which are routinely used by
transmission system operators for dynamic simulations. Three
formulations of the same proportional-integral block with non-
windup limiter are presented in this paper. The first two are
input-output formulations: the first formulation is that described
in the IEEE Standard 421.5-2016, the second one is an alternative
formulation that does not exactly match the IEEE Standard, but
is computationally more efficient. The main contribution of this
paper is the introduction of a third, semi-implicit formulation
which takes advantage of the possibility to change state variables
from algebraic to differential and vice-versa, which is necessary
to obtain a computationally-efficient simulation which closely
matches the IEEE Standard 421.5-2016.

I. INTRODUCTION

Large-scale system stability studies require accurate and
computationally-efficient models of excitation systems, volt-
age regulators, governors and power system stabilizers. These
kinds of studies play a crucial role in modern power system
operations [1]. Since 1992, the IEEE maintains the IEEE
Standard 421.5 [2] which was updated in 2005 [3] and, more
recently, in 2016 [4]. This standard provides models which are
valid for frequency deviations of 5 % from rated frequency and
oscillation frequencies up to 3 Hz.

The specification of the Proportional-Integral (PI) controller
block with non-windup limiter, which is given in IEEE Stan-
dard 421.5-2016 (see Fig. E.7 of [4]) for use in excitation sys-
tem models, presents some modelling challenges for standard
power system time-domain simulation packages which are
routinely used by transmission system operators for dynamic

Fig. 1. PI controller block with non-windup limiter diagram in accordance
with Figure E.7a of the latest IEEE Standard 421.5-2016 [4].

simulations. Such challenges are inherent to the input-output
causal modelling approach which is the modelling method of
choice for commercial power system simulation packages.

The authors are jointly working on the creation and op-
timization of a large-scale model for stability studies of the
Belgian transmission system operated by Elia System Operator
with the power system simulation software PowerFactory
developed by DIgSILENT GmbH. Some of the challenges
encountered by the authors in order to develop an accurate
and computationally efficient model are detailed in this paper.

Three formulations of the same PI controller block with
non-windup limiter depicted in Fig. 1 are presented in this
paper. The first two are input-output formulations: the first
formulation is that described in the IEEE Standard 421.5-
2016, the second one is an alternative formulation that does
not exactly match the IEEE Standard 421.5-2016, but is
computationally more efficient than the first formulation.

The main contribution of this paper is the introduction
of a third, semi-implicit formulation [5] of the equations
of the PI controller block with non-windup limiter which
takes advantage of the possibility to change state variables
from algebraic to differential and vice-versa [6], which is
necessary to obtain a computationally-efficient simulation that
also closely matches the IEEE Standard 421.5-2016.



This formulation has been implemented in the standard
version 2017 of the DIgSILENT PowerFactory software and
is available to all DIgSILENT PowerFactory users through the
introduction of a dedicated additional primitive function in the
DIgSILENT Simulation Language (DSL) for the PI controller
block with non-windup limiter according to IEEE Standard
421.5-2016.

The controller equations for the different controller models
in DSL are provided and explained in the Appendix. The DSL
syntax closely resembles the input-output equations, with the
addition of some primitive functions to express switches and
limiters [7].

A simple numerical example to show the short-comings of
input-output causal modelling in the case of this PI controller
block with non-windup limiter is shown in this paper along
with results obtained using a power system example. Simula-
tion trajectories obtained with different modelling techniques
are compared in terms of accuracy and computational perfor-
mance.

II. PI CONTROLLER BLOCK WITH NON-WINDUP LIMITER
ACCORDING TO IEEE STANDARD 421.5-2016

IEEE Standard 421.5 introduced a PI controller block with
non-windup limiter (see Fig. E.7 of [4]) for use in the
excitation system models ST4C, ST6C, ST8C, AC7C and
AC11C.

The IEEE Standard gives the model description in the
form of input-output block diagram (see Fig. 2) with some
additional written constraints (1):

if yaux ≥ B → yo = B,
dxs

dt
= 0

if yaux ≤ A→ yo = A,
dxs

dt
= 0 (1)

otherwise → yo = yaux,
dxs

dt
= KIyi

Equation (1) expresses that the state variable xs is kept
constant, i.e. has a zero derivative, when the total control
action yaux is outside limits. Otherwise, i.e. when the total
control action is within limits, the derivative of the state
variable xs is equal to KIyi. The latter state is referred to
as the integrating state, while the limited states are referred to
as the lower and upper limited state respectively.

Figure 3 shows the corresponding state-machine implemen-
tation with three states, i.e. one per each line in Eq. (1). Each
of the three states is formulated as a differential equation in
terms of the state variable xs.

While in principle it may be possible to find closed-form
analytical solutions of simple ordinary differential equations,
in practice the system of equations resulting from power
systems have much greater complexity. Equations as given in
Eq. 1 or in Fig. 3 must be discretized in time and algebraized
according to an integration formula in order to be solved in
the context of a power system simulation, together with all the
other representative equations of the system under study.

Fig. 2. PI controller block with non-windup limiter implementation in
accordance to Figure E.7b of the latest IEEE Standard [4].

Fig. 3. State machine of PI controller block with non-windup limiter.

III. DISCRETIZATION AND ALGEBRAIZATION ISSUES

This section investigates a problem that may arise with the
model presented in the previous section, as described by Eq.
1 or Fig. 3, once it has been discretized and algebraized.

A small example easily illustrates that this implementation
cannot be robustly simulated in some cases. We take a case in
which the state machine is already in the upper limited state
(HIGH in Fig. 3).

At the moment of upper limitation, some time before the
actual time, it could be stated that:

xs0 + KP ∗ yi0 = B (2)

where xs0 and yi0 were the values of state variable xs and
input yi at the moment of limitation.

The state machine condition to switch back to the integrat-
ing state (INT in Fig. 3) is:

yaux < B (3)

Since the state variable xs is constant in the upper limited
state at its value xs0 (since the moment the limitation became
active) the condition (3) can be rewritten in terms of the input
yi (assuming KP > 0 for simplicity):

yi <
B − xs0
KP

= yi0 (4)

The state machine would then switch to the integrating
state if condition (4) is fulfilled, i.e. if the input yi decreases
below its value at limit activation yi0. Let us assume that
at a given integration step, the input yi, previously constant
at yi0, decreases from yi0 to yi1 with yi1 < yi0 and
∆yi = yi1 − yi0 < 0.

Assuming an integration step size of length h and applying
the backward Euler rule of integration, one can obtain the
corresponding variation of ∆xs = xs1 − xs0 as:

∆xs = KI ∗ h ∗ yi1 (5)

Assuming yi1 > 0 and KI > 0, then it holds that ∆xs > 0.



In order to obtain a feasible transition from the upper limited
state to the integrating state, it must hold that yaux < B at
the end of the integration step h. This is equivalent to the
condition:

∆xs + KP ∗∆yi < 0 (6)

The substitution of (5) into (6) gives:

KI ∗ h ∗ yi1 + KP ∗ (yi1 − yi0) < 0
KI ∗ h ∗ yi1
KP ∗ yi0

+
yi1
yi0
− 1 < 0 (7)

yi1
yi0

<
1

1 + KI∗h
KP

Equation (7) ultimately indicates that a feasible transition
from the upper limited state to the integrating state can be
obtained only when the input is reduced below a certain value
that depends on the integration step size h and controller gains
KP and KI .

Equation (7) has been derived for the Backward Euler
integration formula. It is however possible to show that for
other integration formulae feasible transitions exist depending
on the values of h, KP and KI .

An interesting observation is that condition (7) is always
satisfied at the limit h→ 0, since yi1 < yi0: this indicates that
the state-machine implementation is correct in the continuous-
time domain and that the transition problem arises because of
the numerical discretization and algebraization.

The transition from the upper limited state to the integrating
state is possible whenever the decrease in the proportional part
of the control action ∆P = KP ∗∆yi is (as an absolute value)
larger than the increase in the integral part of the control action
∆I = ∆xs = KI ∗ h ∗ yi1. In the opposite case, neither the
upper limited state nor the integrating state correctly represent
the system.

In other words, the state machine malfunctions because
its three states do not correctly model all possible modes of
functioning of the system in the discretized time domain. An
example of this would be a case in which the proportional part
of the control action ∆P = KP ∗∆yi is (as an absolute value)
larger than the increase in the integral part of the control action
∆I = ∆xs = KI ∗h∗yi1. This case only be simulated while
accepting that the model keeps switching between infeasible
integrating state in one integration step and infeasible upper
limited state in the next.

IV. ALTERNATIVE MODEL OF PI CONTROLLER BLOCK
WITH NON-WINDUP LIMITER

Section III illustrated that an infeasible transition may occur
in the PI controller block as described by the IEEE Standard
421.5-2016 [4]. This section briefly describes an alternative
model of PI controller block with non-windup limiter which
suffers less from the described issues while not exactly match-
ing the response of the IEEE Standard controller.

Figure 4 shows the block diagram and implementation of
the alternative model. With respect to the model described
in Fig. 2, this model implements the anti-windup limitation

Fig. 4. Alternative PI controller block with non-windup limiter.

in a standard way on the state variable xs, i.e. disregarding
the additional written constraints (1). This means that the
derivative of the state variable xs is equal to KIyi while xs
is within limits and zero otherwise.

Allowing the state variable to keep integrating when the
total control action is outside limits and until the integral
action is within limits leads to a delayed response at limit
deactivation.

V. SEMI-IMPLICIT FORMULATION OF PI CONTROLLER
BLOCK

This section describes the main contribution of the paper,
which is a formulation of the PI controller block which strictly
matches the behaviour described in the IEEE Standard while
avoiding the infeasible transitions described in Section III.

This semi-implicit formulation [5] of the PI controller block
with non-windup limiter takes advantage of the possibility to
change state variables from algebraic to differential and vice-
versa [6].

The infeasible transition described in Section III may be
avoided with the introduction of an additional algebraic mode
in the state machine that describes the functioning of the
system while the proportional part of the control action ∆P =
KP ∗∆yi is (as an absolute value) smaller than the increase in
the integral part of the control action ∆I = KI ∗h ∗ yi1. The
additional ceiling state (CEIL in Fig. 5) represents the system
behaviour when the control action is kept at the maximum
by an integral action which is smaller than that given by
the state derivative and opposite to the proportional action.
This is best expressed by the algebraic constraint yaux = B
which results in the algebraic equation 0 = yaux − B or
0 = xs + KP ∗ yi−B.

The ceiling state may then transition to the integrating state,
as soon as the proportional part of the control action ∆P =
KP ∗∆yi is (as an absolute value) larger than the increase in
the integral part of the control action ∆I = KI ∗ h ∗ yi1.

Conversely, the ceiling state may also transition back to the
upper limited state when the proportional action is positive.

Figure 5 shows that the equations in the different modes may
be differential (INT and HIGH states) or algebraic (CEIL state)
for the same state variable xs. This is not possible in standard
input-output formulations which require ordinary differential
equations to be formulated as dxs

dt = f(xs).
Conversely, the extended formulation Γdxs

dt = f(xs) [6],
which is a particular case of the general semi-implicit for-



Fig. 5. State machine of semi-implicit formulation of PI controller block with
non-windup limiter (only three states out of five are represented).

mulation 0 = F (dxs
dt , xs) [5], allows the changing of state

variables from algebraic to differential and vice-versa.
In order to obtain a complete state machine, an algebraic

flooring state should also be added to ensure feasible transi-
tions between the integrating state and the lower limited state.
The flooring state equations and transition conditions may be
determined in a similar way to those derived for the ceiling
state.

VI. SIMPLE EXAMPLE

In this section, the control response of the different imple-
mentations with respect to a sinusoidal input are investigated,
assuming the gains KP = 0.5 and KI = 1 and the limits
A = −1 and B = 1.

For the example, a sinusoidal input is assumed in the form:

if time ≤ 0 → yi = 0

otherwise → yi = 2 ∗ sin(time) (8)

These simulations have been performed in the standard
version 2017 of the DIgSILENT PowerFactory software. A
fixed integration step size h equal to 10 ms is used throughout
the simulation. Larger step sizes and automatic step size
adaptation strategies have also been tested, but are not reported
here for brevity.

Figures 7 and 8 show the simulated trajectories. Models are
labelled as follows:

• LimSelect: PI controller block with non-windup limiter
according to IEEE Standard 421.5 (Section II);

• LimLimState: Simplified model of PI controller block
with non-windup limiter (Section IV);

• PiControl: Semi-implicit formulation of PI controller
block (Section V).

Figure 7 shows in the upper diagrams that the simulation
trajectories of the LimSelect and the PiControl models
match in a satisfactory way at a macroscopic level. Comparing
any of these models trajectories with those obtained with
LimLimState in the lower left diagram shows that the latter
model response does not closely match that of the IEEE Stan-
dard. The overall control response, however, is slightly delayed
as shown in the lower right diagram, where the LimSelect
trajectory has been omitted because it is indistinguishable from
the one obtained with PiControl.

The computational effort for the PiControl and the
LimLimState models is very similar. The LimSelect model,
however, is more computationally demanding because of the
infeasible transitions that occur as described in Section II.

This can be observed in Fig. 8 where a zoom is provided
over the simulation time in which the infeasible transitions

occur. The trajectories computed with the LimSelect model
do not follow the limit curve smoothly as is the case for the
PiControl model; instead they either overshoot in integrating
mode or undershoot in upper limited mode, as shown in the
two upper plots. Since the LimSelect model has no ceiling
state, this is obtained with the alternance of integrating and
upper limited states for very small periods of time (usually
one or two integration steps). The theoretical explanation for
this numerical issue has been given in Section III.

Such discrete transitions perturb the simulation algorithm
and would pose particular difficulties to automatic integration
step size adaptation algorithms which would be forced by the
many occurring events to use smaller steps than otherwise
allowed. This may in turn greatly impact their performance.

Figure 8 also shows in detail in the lower plots the difference
between the control action of the models; the LimLimState
response is delayed with respect to those obtained with both
the LimSelect and the PiControl models.

VII. POWER SYSTEM EXAMPLE

This section illustrates the differences between the dif-
ferent modelling formulations on a power system example.
The simulated test case is based on the Test Case 2 from
the ENTSO-E documentation on controller tests in test grid
configurations [8]. The original test case has been modified to
remove islanded operation and the simulated contingency is
the connection of a 380 MW load on the machine terminal at
t = 1 s. A fixed integration step size h of 1 ms is used.

While the IEEE Standard 421.5-2016 refers to excitation
systems, the PI control used in this example is within a gas
turbine-governor model for illustrative purposes. The simpli-
fied control scheme of this model [9] is illustrated in Fig. 6.
The PI part of the proportional-integral-differential controller
under study has been modelled according to the different
modelling techniques discussed in this paper (LimSelect,
LimLimState and PiControl, as described in Section VI).

The input yi, the output yo and the mechanical power
pm are indicated in Fig. 6. The state variable within the
PI controller block is labelled xs in Figs. 9 and 10 which
show the simulation trajectories of the LimLimState and
the PiControl models. The LimSelect trajectories have been
omitted because they are indistinguishable from the latter.

Figure 9 shows that the control action on pm is slightly
higher in the LimLimState model than in the PiControl
model. In this example the trajectories are quite close but
they may be more distant in other cases. The reason for their
difference can be observed in Fig. 10 which shows that slightly
before t = 1.15 s, when yo gets to its upper limit of 1, the
xs variable computed with the PiControl model remains
constant, while the same variable computed with LimState
keeps integrating and eventually reaches its upper limit much
later at t = 1.4 s. This delays the release of the output yo from
its upper limit at around t = 1.6 s in the LimLimState model,
which ultimately is the cause of the discrepancies encountered.
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Fig. 6. Simplified block diagram of the example gas turbine-governor model
showing the proportional-integral-differential controller under study.

VIII. CONCLUSION

This paper investigates the simulation behaviour of three
implementations of the PI controller block with non-windup
limiter introduced by IEEE Standard 421.5-2016 [4]. This
IEEE Standard describes appropriate excitation systems and
power system stabilizer models which are fundamental for
large-scale system stability studies.

It has been shown that the standard implementation of the
PI controller block with non-windup limiter suffers from the
drawback of infeasible transitions that produce both slightly
inaccurate and computationally demanding simulations. An
alternative model with increased computational efficiency has
been also investigated.

A novel implementation that makes use of a semi-implicit
formulation [5] to change a state variable from algebraic to
differential and vice-versa [6] leads to accurate behaviour
and computationally efficient simulations. This is the main
contribution of the paper.

The numerical issues described have been shown on a
simple simulation example and on a power system example.
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IX. APPENDIX

The controller equations for the different controller models
in the DIgSILENT Simulation Language (DSL) are provided
and explained in this appendix.

A. LimSelect - PI controller block with non-windup limiter
according to IEEE Standard 421.5 (Section II)

Equation (1) can be rewritten in the DSL language as
follows:

xs. = select(yaux < B .and. yaux > A,KI ∗ yi, 0)

yaux = xs + KP ∗ yi (9)
yo = lim(yaux,A,B)

Equation (9) makes use of the (.) operator to indicate the
derivative with respect to time and of two DSL primitives:

• select: evaluates the first argument (in this case whether
yaux is within its A,B bounds), then returns the second
argument if the first argument is true and the third
argument otherwise;

• lim: limits the first argument between the second argu-
ment (lower limit) and the third argument (upper limit).

B. LimLimState - Simplified model of PI controller block
with non-windup limiter (Section IV)

The model represented by the block diagram in Fig. 4 can
be rewritten in the DSL language as follows:

xs. = KI ∗ yi
yaux = xs + KP ∗ yi (10)

yo = lim(limstate(xs,A,B) + KP ∗ yi, A,B)

Equation (10) makes use of the DSL primitive limstate
whose first argument is the state variable; and the second and
third arguments are the lower and upper limits, respectively.
This primitive implements a simple anti-windup limiter on the
state variable xs.

C. PiControl - Semi-implicit formulation of PI controller
block (Section V)

The model represented by the state machine in Fig. 5 can
be written as follows:

xs. = KI ∗ yi
yaux = xs + KP ∗ yi (11)

yo = picontrol const(xs,A,B,KP ∗ yi)
Equation (11) makes use of the DSL primitive

picontrol const which implements the state machine
as described in Section V. The first argument is the state
variable; the second and third arguments are the lower and
upper limits, respectively; and the fourth argument is the
proportional part of the control action.

D. Simple example (Section VI)
The sinusoidal input (8) is described in DSL as follows:

yi = select(time() < 0, 0, 2 ∗ sin(time())) (12)

where the function time() returns the current simulation time.



Fig. 7. Simulation results for the sinusoidal input example.

Fig. 8. Simulation results for the sinusoidal input example (zoom).



Fig. 9. Simulation results for the power system example.

Fig. 10. Simulation results for the power system example (zoom).


